Skip to main content

llama-index index_store azure integration

Project description

LlamaIndex Index_Store Integration: Azure Table Storage

AzureIndexStore utilizes Azure Table Storage and Cosmos DB to provide an index storage solution for indexing documents or data.

Installation

Before using the AzureIndexStore, ensure you have Python installed and then proceed to install the required packages:

pip install llama-index-storage-index-store-azure
pip install azure-data-tables
pip install azure-identity  # Only needed for AAD token authentication

Initializing AzureIndexStore

AzureIndexStore can be initialized in several ways depending on the authentication method and the Azure service (Table Storage or Cosmos DB) you are using:

1. Using a Connection String

from llama_index.storage.index_store.azure import AzureIndexStore
from llama_index.storage.kvstore.azure.base import ServiceMode

store = AzureIndexStore.from_connection_string(
    connection_string="your_connection_string_here",
    namespace="your_namespace",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

2. Using Account Name and Key

store = AzureIndexStore.from_account_and_key(
    account_name="your_account_name",
    account_key="your_account_key",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

3. Using SAS Token

store = AzureIndexStore.from_sas_token(
    endpoint="your_endpoint",
    sas_token="your_sas_token",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

4. Using Azure Active Directory (AAD) Token

store = AzureIndexStore.from_aad_token(
    endpoint="your_endpoint",
    service_mode=ServiceMode.STORAGE,  # or ServiceMode.COSMOS
)

End-to-end example:

from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import VectorStoreIndex

reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
nodes = SentenceSplitter().get_nodes_from_documents(documents)

storage_context = StorageContext.from_defaults(
    index_store=AzureIndexStore.from_account_and_key(
        "your_account_name",
        "your_account_key",
        service_mode=ServiceMode.STORAGE,
    ),
)

storage_context.docstore.add_documents(nodes)

keyword_table_index = SimpleKeywordTableIndex(
    nodes, storage_context=storage_context
)

vector_index = VectorStoreIndex(nodes, storage_context=storage_context)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_storage_index_store_azure-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_storage_index_store_azure-0.3.0.tar.gz
Algorithm Hash digest
SHA256 0e37696e7be069cfd47323a1764d706404fb8a08ea440cc0f8afa6d8de439f2b
MD5 8654dd30723a8a380a9c43ba344ea323
BLAKE2b-256 9831e667656cb8d0199fd54b7fa5c9a9d8d902d86db202ec9ed9c03e8e10c5a4

See more details on using hashes here.

File details

Details for the file llama_index_storage_index_store_azure-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_storage_index_store_azure-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 28766092108ba388a9c0124ddbe15d48918273a1ffca13ea8882c9a9f0dad2bb
MD5 f8704047c2b0069e44a098672d5ef59b
BLAKE2b-256 1e60a12ca5435c32e690ad6095122b8f889c71adb76e9327957c36c01a07d380

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page