Skip to main content

llama-index tools azure dynamic sessions integration for code interpreter

Project description

Azure Code Interpreter Tool

This tool leverages Azure Dynamic Sessions Pool to enable an Agent to run generated Python code in a secure environment with very low latency.

In order to utilize the tool, you will need to have the Session Pool management endpoint first. Learn more

Prerequisites

  • Make sure to create a Session Pool and note down the poolManagementEndpoint.

  • In order to have the code execution right, the correct role needs to be assigned to the current user agent. Be sure to assign Session Pool Executor role to the correct user agent's identity (e.g. User Email, Service Principal, Managed Identity, etc.) in Session Pool's access control panel through the Portal or CLI. Learn more

Usage

A more detailed sample is located in a Jupyter notebook here

Here's an example usage of the AzureCodeInterpreterToolSpec.

  1. First, install the Azure Dynamic Sessions package using pip:
pip install llama-index-tools-azure-code-interpreter
  1. Create a file named .env in the same directory as your script with the following content:
AZURE_POOL_MANAGEMENT_ENDPOINT=<poolManagementEndpoint>
  1. Next, set up the Dynamic Sessions tool and a LLM agent:
from llama_index.tools.azure_code_interpreter import (
    AzureCodeInterpreterToolSpec,
)
from llama_index.core.agent import ReActAgent
from llama_index.llms.azure_openai import AzureOpenAI

llm = AzureOpenAI(
    model="gpt-35-turbo",
    deployment_name="gpt-35-deploy",
    api_key=api_key,
    azure_endpoint=azure_endpoint,
    api_version=api_version,
)

code_interpreter_spec = AzureCodeInterpreterToolSpec(
    pool_management_endpoint=os.getenv("AZURE_POOL_MANAGEMENT_ENDPOINT")
)

agent = ReActAgent.from_tools(
    code_interpreter_spec.to_tool_list(), llm=llm, verbose=True
)
  1. Use the tool as you need:
print(agent.chat("Tell me the current time in Seattle."))

"""
Sample Return:
Thought: To provide the current time in Seattle, I need to calculate it based on the current UTC time and adjust for Seattle's time zone, which is Pacific Daylight Time (PDT) during daylight saving time and Pacific Standard Time (PST) outside of daylight saving time. PDT is UTC-7, and PST is UTC-8. I can use the code interpreter tool to get the current UTC time and adjust it accordingly.
Action: code_interpreter
Action Input: {'python_code': "from datetime import datetime, timedelta; import pytz; utc_now = datetime.now(pytz.utc); seattle_time = utc_now.astimezone(pytz.timezone('America/Los_Angeles')); seattle_time.strftime('%Y-%m-%d %H:%M:%S %Z%z')"}
Observation: {'$id': '1', 'status': 'Success', 'stdout': '', 'stderr': '', 'result': '2024-05-04 13:54:09 PDT-0700', 'executionTimeInMilliseconds': 120}
Thought: I can answer without using any more tools. I'll use the user's language to answer.
Answer: The current time in Seattle is 2024-05-04 13:54:09 PDT.
The current time in Seattle is 2024-05-04 13:54:09 PDT.
"""

print(dynamic_session_tool.code_interpreter("1+1"))

"""
Sample Return:
{'$id': '1', 'status': 'Success', 'stdout': '', 'stderr': '', 'result': 2, 'executionTimeInMilliseconds': 11}
"""

Included Tools

The AzureCodeInterpreterToolSpec provides the following tools to the agent:

code_interpreter: (Available to developer and LLM Agent in tool spec) Send a Python code to be executed in Azure Container Apps Dynamic Sessions and return the output in a JSON format.

list_files: (Available to developer and LLM Agent in tool spec) List the files available in a Session under the path /mnt/data.

upload_file: (Available to developer) Upload a file or a stream of data into a Session under the path /mnt/data.

download_file: (Available to developer) Download a file by its path relative to the path /mnt/data to the tool's hosting agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_tools_azure_code_interpreter-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_tools_azure_code_interpreter-0.4.0.tar.gz
Algorithm Hash digest
SHA256 c9fdb4aefe955caa2b1956f6d0f0d5031f6f3896f0eaa834004bf3c7f030bb97
MD5 bd7427b3a52ae186c196bbfdb3a7f86a
BLAKE2b-256 5404e6525aca0fa043201b415444ca3316284b3352cc7d7923450f55e6c49f49

See more details on using hashes here.

File details

Details for the file llama_index_tools_azure_code_interpreter-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_tools_azure_code_interpreter-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 907a9dd0a6e0234b5b0fd6bd49c93b76ff9423b2fb417a5471da178bd0a16497
MD5 fd905cb543ca48c3a38814de835d7d0c
BLAKE2b-256 a64fea24a6bbd6680c2c9eb644f708d2290f6ad87de459ad03918acf334db34b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page