Skip to main content

llama-index tools vector_db integration

Project description

VectorDB Tool

This tool wraps a VectorStoreIndex and enables a agent to call it with queries and filters to retrieve data.

Usage

from llama_index.tools.vector_db import VectorDB
from llama_index.agent.openai import OpenAIAgent
from llama_index.core.vector_stores import VectorStoreInfo
from llama_index.core import VectorStoreIndex

index = VectorStoreIndex(nodes=nodes)
tool_spec = VectorDB(index=index)
vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description="Category of the celebrity, one of [Sports, Entertainment, Business, Music]",
        ),
        MetadataInfo(
            name="country",
            type="str",
            description="Country of the celebrity, one of [United States, Barbados, Portugal]",
        ),
    ],
)

agent = OpenAIAgent.from_tools(
    tool_spec.to_tool_list(
        func_to_metadata_mapping={
            "auto_retrieve_fn": ToolMetadata(
                name="celebrity_bios",
                description=f"""\
            Use this tool to look up biographical information about celebrities.
            The vector database schema is given below:

            {vector_store_info.json()}

            {tool_spec.auto_retrieve_fn.__doc__}
        """,
                fn_schema=create_schema_from_function(
                    "celebrity_bios", tool_spec.auto_retrieve_fn
                ),
            )
        }
    ),
    verbose=True,
)

agent.chat("Tell me about two celebrities from the United States. ")

auto_retrieve_fn: Retrieves data from the index

This loader is designed to be used as a way to load data as a Tool in a Agent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_tools_vector_db-0.3.0.tar.gz (2.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_tools_vector_db-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_tools_vector_db-0.3.0.tar.gz
Algorithm Hash digest
SHA256 eb134bc94e50f7b4d916d2f1de4b4a8a974065cb75642479a8c0593628220617
MD5 d0073ecccccabf913507d6570591eb11
BLAKE2b-256 063514466b4c874fcba98db9e32c0b2ded44a048921c1bb636db63770d55c4b5

See more details on using hashes here.

File details

Details for the file llama_index_tools_vector_db-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_tools_vector_db-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 66d9aaecc01c1792e18f441c67c3067a6c8efd304815f11a644da499b11a893c
MD5 46d160eb7a9b692a00729ac20feec4d4
BLAKE2b-256 1b046614482680ed986d101662ddf29ab186a1d7a64da7405a4e2ac12b811856

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page