Integration package connecting ObjectBox and LlamaIndex
Project description
ObjectBox VectorStore For LlamaIndex
About
This package contains the ObjectBox integrations for LlamaIndex
Getting Started
Install the llama-index-vector-stores-objectbox
package from PyPI via pip.
pip install llama-index-vector-stores-objectbox
You can import the ObjectBox vector-store with from llama_index.vector_stores.objectbox import ObjectBoxVectorStore
and start using it,
from llama_index.vector_stores.objectbox import ObjectBoxVectorStore
from objectbox import VectorDistanceType
embedding_dim = 384 # size of the embeddings to be stored
vector_store = ObjectBoxVectorStore(
embedding_dim,
distance_type=VectorDistanceType.COSINE,
db_directory="obx_data",
clear_db=False,
do_log=True
)
embedding_dim
(required): The dimensions of the embeddings that the vector DB will holddistance_type
: Choose fromCOSINE
,DOT_PRODUCT
,DOT_PRODUCT_NON_NORMALIZED
andEUCLIDEAN
db_directory
: The path of the directory where the.mdb
ObjectBox database file should be createdclear_db
: Deletes the existing database file if it exists ondb_directory
do_log
: Enables logging from the ObjectBox integration
A complete RAG example
Along the llama-index-vector-stores-objectbox
, install the following packages,
pip install llama-index --quiet
pip install llama-index-embeddings-huggingface --quiet
pip install llama-index-llms-gemini --quiet
Download a sample text file,
mkdir -p 'data/paul_graham/'
wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
This example will require a Gemini API key. You can get an API-key from the Gemini developer console. Execute the following Python script to generate an answer for Who is Paul Graham?
from the text file,
from llama_index.llms.gemini import Gemini
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.objectbox import ObjectBoxVectorStore
from llama_index.core import StorageContext, VectorStoreIndex, Settings
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from objectbox import VectorDistanceType
import getpass
gemini_key_api = getpass.getpass("Gemini API Key: ")
gemini_llm = Gemini(api_key=gemini_key_api)
# Configure embedding model from HuggingFace
hf_embedding = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
embedding_dim = 384
# Setup file reader and text splitter
reader = SimpleDirectoryReader("./data/paul_graham")
documents = reader.load_data()
node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
nodes = node_parser.get_nodes_from_documents(documents)
# Configure ObjectBox as a vector-store
vector_store = ObjectBoxVectorStore(
embedding_dim,
distance_type=VectorDistanceType.COSINE,
db_directory="obx_data",
clear_db=False,
do_log=True
)
storage_context = StorageContext.from_defaults(
vector_store=vector_store
)
Settings.llm = gemini_llm
Settings.embed_model = hf_embedding
index = VectorStoreIndex(
nodes=nodes,
storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("Who is Paul Graham?")
print(response)
License
MIT License
Copyright (c) 2024 ObjectBox, Ltd.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llama_index_vector_stores_objectbox-0.1.0a0.tar.gz
.
File metadata
- Download URL: llama_index_vector_stores_objectbox-0.1.0a0.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.4 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c33cf0e854f37d35229ea19d774dfae1cef9bb09b00ca0c78908a1bb47f159f |
|
MD5 | 43b59d92c519ac18d3bf480beecae4fd |
|
BLAKE2b-256 | d6576f17b216fca5a858fb1bcc09bea92c98a75e373d4396776a5fa47b042ba1 |
File details
Details for the file llama_index_vector_stores_objectbox-0.1.0a0-py3-none-any.whl
.
File metadata
- Download URL: llama_index_vector_stores_objectbox-0.1.0a0-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.4 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c221da2c63b6e4cb946f80f3412658ff4c6fa3e0dda41f80f2fa0e3243eaf26 |
|
MD5 | 8ffea68fb331148892b49bbe62c1ef47 |
|
BLAKE2b-256 | d111581a13f2b623f0ad80d4b37c553572845ef67ef699b0b1b810f351a7794d |