Skip to main content

Interface between LLMs and your data

Project description

Llama-index with InterSystems IRIS

Llama-index with support for InterSystems IRIS

Install

pip install llama-iris

Example

import os
from dotenv import load_dotenv

from llama_index import SimpleDirectoryReader, StorageContext, ServiceContext
from llama_index.indices.vector_store import VectorStoreIndex
import openai

from llama_iris import IRISVectorStore


load_dotenv(override=True)

documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)

vector_store = IRISVectorStore.from_params(
    connection_string=CONNECTION_STRING,
    table_name="paul_graham_essay",
    embed_dim=1536,  # openai embedding dimension
)

storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, 
    storage_context=storage_context, 
    show_progress=True, 
)
query_engine = index.as_query_engine()

response = query_engine.query("What did the author do?")

import textwrap
print(textwrap.fill(str(response), 100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_iris-0.5.0.tar.gz (5.0 kB view hashes)

Uploaded Source

Built Distribution

llama_iris-0.5.0-py3-none-any.whl (5.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page