Skip to main content

Interface between LLMs and your data

Project description

Llama-index with InterSystems IRIS

Llama-index with support for InterSystems IRIS

Install

pip install llama-iris

Example

import os
from dotenv import load_dotenv

from llama_index import SimpleDirectoryReader, StorageContext, ServiceContext
from llama_index.indices.vector_store import VectorStoreIndex
import openai

from llama_iris import IRISVectorStore


load_dotenv(override=True)

documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)

vector_store = IRISVectorStore.from_params(
    connection_string=CONNECTION_STRING,
    table_name="paul_graham_essay",
    embed_dim=1536,  # openai embedding dimension
)

storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, 
    storage_context=storage_context, 
    show_progress=True, 
)
query_engine = index.as_query_engine()

response = query_engine.query("What did the author do?")

import textwrap
print(textwrap.fill(str(response), 100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_iris-0.5.0.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

llama_iris-0.5.0-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file llama_iris-0.5.0.tar.gz.

File metadata

  • Download URL: llama_iris-0.5.0.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for llama_iris-0.5.0.tar.gz
Algorithm Hash digest
SHA256 f0898205dcaa24800cde45cdb64ad457633c636367c2d6558035d7d748356e34
MD5 1d7236f8fd2e142bb6cab6985955e59f
BLAKE2b-256 828752ab1a46bc3a306cc45a748e88584d3e2d9e2b14883a56db3eca4cbee443

See more details on using hashes here.

File details

Details for the file llama_iris-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: llama_iris-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for llama_iris-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40d9e28e24301e433d0777426c909be05cd271d20e72700826284db33a028686
MD5 db73ba20307b105f766309595e7388cb
BLAKE2b-256 46c15b7eca5788e850727737446f651f91383b28c13844458c345c1e78b95b63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page