Skip to main content

Llama Stack

Project description

Llama Stack Logo

Llama Stack

PyPI version PyPI - Downloads Discord

This repository contains the Llama Stack API specifications as well as API Providers and Llama Stack Distributions.

The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to building and running AI agents in production. Beyond definition, we are building providers for the Llama Stack APIs. These were developing open-source versions and partnering with providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.

The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.

APIs

The Llama Stack consists of the following set of APIs:

  • Inference
  • Safety
  • Memory
  • Agentic System
  • Evaluation
  • Post Training
  • Synthetic Data Generation
  • Reward Scoring

Each of the APIs themselves is a collection of REST endpoints.

API Providers

A Provider is what makes the API real -- they provide the actual implementation backing the API.

As an example, for Inference, we could have the implementation be backed by open source libraries like [ torch | vLLM | TensorRT ] as possible options.

A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.

Llama Stack Distribution

A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.

Supported Llama Stack Implementations

API Providers

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
Fireworks Hosted :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
AWS Bedrock Hosted :heavy_check_mark: :heavy_check_mark:
Together Hosted :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
Ollama Single Node :heavy_check_mark:
TGI Hosted and Single Node :heavy_check_mark:
Chroma Single Node :heavy_check_mark:
PG Vector Single Node :heavy_check_mark:
PyTorch ExecuTorch On-device iOS :heavy_check_mark: :heavy_check_mark:

Distributions

Distribution Provider Docker Inference Memory Safety Telemetry
Meta Reference Local GPU, Local CPU :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
Dell-TGI Local TGI + Chroma :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

Installation

You have two ways to install this repository:

  1. Install as a package: You can install the repository directly from PyPI by running the following command:

    pip install llama-stack
    
  2. Install from source: If you prefer to install from the source code, follow these steps:

     mkdir -p ~/local
     cd ~/local
     git clone git@github.com:meta-llama/llama-stack.git
    
     conda create -n stack python=3.10
     conda activate stack
    
     cd llama-stack
     $CONDA_PREFIX/bin/pip install -e .
    

Documentations

The llama CLI makes it easy to work with the Llama Stack set of tools. Please find the following docs for details.

Llama Stack Client SDK

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Node llama-stack-client-node NPM version
Kotlin llama-stack-client-kotlin

Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from python, node, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_stack-0.0.46.tar.gz (173.7 kB view details)

Uploaded Source

Built Distribution

llama_stack-0.0.46-py3-none-any.whl (294.6 kB view details)

Uploaded Python 3

File details

Details for the file llama_stack-0.0.46.tar.gz.

File metadata

  • Download URL: llama_stack-0.0.46.tar.gz
  • Upload date:
  • Size: 173.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for llama_stack-0.0.46.tar.gz
Algorithm Hash digest
SHA256 30c8a1a1db4dbdde8b88f8c4a6e6d07b478139b6b16c46f8cd1129e3bb44a4af
MD5 a50b3c90cfd5ec642512f23097eb8c26
BLAKE2b-256 b21f09a9bc45be7a239af8dd914bf1edf9accd379c2c27ebf2304f363cbabb64

See more details on using hashes here.

File details

Details for the file llama_stack-0.0.46-py3-none-any.whl.

File metadata

  • Download URL: llama_stack-0.0.46-py3-none-any.whl
  • Upload date:
  • Size: 294.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for llama_stack-0.0.46-py3-none-any.whl
Algorithm Hash digest
SHA256 f29202acf085a29b29987245fe3a6a1a641b73e5ab85a6afdc607b7706ba6c81
MD5 d94c9f4ddb0da003ec60ca5db485348c
BLAKE2b-256 af7cf4e567dd4ed885b4cd00b1a58b15b06a32669d0045149ad0fc23d8946c7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page