Skip to main content

Llama trainer utility

Project description

🦙 Llama Trainer Utility

Upload to PyPi

A "just few lines of code" utility for fine-tuning (not only) Llama models.

To install:

pip install llama-trainer

Training and Inference

Training

from llama_trainer import LlamaTrainer
from datasets import load_dataset

dataset = load_dataset("timdettmers/openassistant-guanaco")

# define your instruction-based sample
def to_instruction_fn(sample):
    return sample["text"]

formatting_func = to_instruction_fn

output_dir = "llama-2-7b-hf-finetune"
llama_trainer = LlamaTrainer(
    model_name="meta-llama/Llama-2-7b-hf", 
    dataset=dataset, 
    formatting_func=formatting_func,
    output_dir=output_dir
)
llama_trainer.train()

Inference

from llama_trainer import LlamaInfer
import transformers as tr


llama_infer = LlamaInfer(output_dir)

prompt = "### Human: Give me some output!### Assistant:"
print(llama_infer(prompt))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama-trainer-0.2.1.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

llama_trainer-0.2.1-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file llama-trainer-0.2.1.tar.gz.

File metadata

  • Download URL: llama-trainer-0.2.1.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for llama-trainer-0.2.1.tar.gz
Algorithm Hash digest
SHA256 54ff7bac916315161c75549f11043cbc70a016afaac207d7163a24f7f8f820a8
MD5 8d6dbe2e6f068b05bca6c2f0ce25fc72
BLAKE2b-256 2baf3b04b223e875ffbe748d8fbc4c54ab1f16abc5ead1d68c86306286d75507

See more details on using hashes here.

File details

Details for the file llama_trainer-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_trainer-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 03caffce8f476cbdea06f280e7a84fc55bc037b3489cce1ff3184a285b64afea
MD5 faa292397d747a76b474981841cc9958
BLAKE2b-256 a13ab5ff93529be225059ad789d74233d973bf2bb631565a19b258c8190a3175

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page