Skip to main content

A simple token counter for Llama 3.2 models.

Project description

Llama 3.2 Token Counter

Python Version License

A simple and efficient token counter for Llama 3.2 models.

Description

The Llama 3.2 Token Counter is a Python package that provides an easy way to count tokens generated by Llama 3.2 models. This tool is essential for developers and researchers working with large language models, helping them manage token limits and optimize their use of the Llama 3.2 architecture.

Features

  • Accurate token counting for Llama 3.2 models
  • Easy-to-use Python API
  • Supports both string and list of strings inputs
  • Asynchronous token counting support
  • Batch processing for large inputs
  • Lightweight and efficient

Installation

You can install the Llama 3.2 Token Counter using pip:

pip install llama3.2-token-counter

Usage

Here's a quick example of how to use the Llama 3.2 Token Counter:

from llama_token_counter import LlamaTokenCounter
import asyncio

# Initialize the token counter
counter = LlamaTokenCounter()

# Synchronous token counting
text = "Hello, world! This is a sample text for token counting."
token_count = counter.count_tokens(text)
print(f"The text contains {token_count} tokens.")

# Asynchronous token counting
async def count_async():
    text = "This is an async token counting example."
    token_count = await counter.count_tokens(text)
    print(f"The async text contains {token_count} tokens.")

asyncio.run(count_async())

# Count tokens in a list of strings
texts = ["Hello, world!", "This is another sample.", "Multiple strings can be processed."]
token_count = counter.count_tokens(texts)
print(f"The list of texts contains {token_count} tokens in total.")

# Get the maximum token limit
max_tokens = counter.get_max_tokens()
print(f"The maximum token limit is {max_tokens}.")

# Batch processing for large lists
large_list = ["Text " + str(i) for i in range(10000)]
token_count = counter.count_tokens(large_list, batch_size=500)
print(f"The large list contains {token_count} tokens in total.")

Contributing

We welcome contributions to the Llama 3.2 Token Counter! If you'd like to contribute, please look at CONTRIBUTING.md for more information.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

Anthony - @anthoeknee

Project Link: https://github.com/anthoeknee/llama3.2-token-counter

Running Tests

To run the tests, follow these steps:

  1. Clone the repository:

    git clone https://github.com/yourusername/llama3.2-token-counter.git
    cd llama3.2-token-counter
    
  2. Install the development dependencies:

    pip install -r requirements.txt
    
  3. Run the tests:

    pytest tests
    

Make sure you have the necessary tokenizer files in the src/llama_token_counter/tokenizer directory before running the tests.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama3_2_token_counter-0.5.0.tar.gz (5.6 MB view details)

Uploaded Source

Built Distribution

llama3.2_token_counter-0.5.0-py3-none-any.whl (3.3 MB view details)

Uploaded Python 3

File details

Details for the file llama3_2_token_counter-0.5.0.tar.gz.

File metadata

File hashes

Hashes for llama3_2_token_counter-0.5.0.tar.gz
Algorithm Hash digest
SHA256 6381d44b57afe7b7b28fa28e1d8d2e3b74e50a0e5f6b21f396fd7639804c2a3b
MD5 ed9a6367953adab352d1906707898aa9
BLAKE2b-256 8ab00d05b1d8dfa408d0b4c7ceb884bafb5a89d71231a79db3279041af8543e9

See more details on using hashes here.

File details

Details for the file llama3.2_token_counter-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama3.2_token_counter-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0377c60da862bd9f5f1a7188d2cd214572cd5db031f709135afd80bc4cab1047
MD5 8b1b68a34ff4347e3542c07c6c4ee1a7
BLAKE2b-256 165b2ca8d4be6211daceb22646462d3888627530ade0f0d3859078f9014027c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page