Skip to main content

A simple token counter for Llama 3.2 models.

Project description

Llama 3.2 Token Counter

Python Version License

A simple and efficient token counter for Llama 3.2 models.

Description

The Llama 3.2 Token Counter is a Python package that provides an easy way to count tokens generated by Llama 3.2 models. This tool is essential for developers and researchers working with large language models, helping them manage token limits and optimize their use of the Llama 3.2 architecture.

Features

  • Accurate token counting for Llama 3.2 models
  • Easy-to-use Python API
  • Supports both string and list of strings inputs
  • Asynchronous token counting support
  • Lightweight and efficient

Installation

You can install the Llama 3.2 Token Counter using pip:

pip install llama3.2-token-counter

Usage

Here's a quick example of how to use the Llama 3.2 Token Counter:

from llama_token_counter import LlamaTokenCounter
import asyncio

# Initialize the token counter
counter = LlamaTokenCounter()

# Synchronous token counting
text = "Hello, world! This is a sample text for token counting."
token_count = counter.count_tokens(text)
print(f"The text contains {token_count} tokens.")

# Asynchronous token counting
async def count_async():
    text = "This is an async token counting example."
    token_count = await counter.count_tokens(text, async_mode=True)
    print(f"The async text contains {token_count} tokens.")

asyncio.run(count_async())

# Count tokens in a list of strings
texts = ["Hello, world!", "This is another sample.", "Multiple strings can be processed."]
token_count = counter.count_tokens(texts)
print(f"The list of texts contains {token_count} tokens in total.")

# Get the maximum token limit
max_tokens = counter.get_max_tokens()
print(f"The maximum token limit is {max_tokens}.")

# Batch processing for large lists
large_list = ["Text " + str(i) for i in range(10000)]
token_count = counter.count_tokens(large_list, batch_size=500)
print(f"The large list contains {token_count} tokens in total.")

Contributing

We welcome contributions to the Llama 3.2 Token Counter! If you'd like to contribute, please look at CONTRIBUTING.md for more information.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

Anthony - @anthoeknee

Project Link: https://github.com/anthoeknee/llama3.2-token-counter

Running Tests

To run the tests, follow these steps:

  1. Clone the repository:

    git clone https://github.com/yourusername/llama3.2-token-counter.git
    cd llama3.2-token-counter
    
  2. Install the development dependencies:

    pip install -r requirements.txt
    
  3. Run the tests:

    python -m unittest discover tests
    

Make sure you have the necessary tokenizer files in the src/tokenizer directory before running the tests.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama3_2_token_counter-0.1.0.tar.gz (2.3 MB view details)

Uploaded Source

Built Distribution

llama3.2_token_counter-0.1.0-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file llama3_2_token_counter-0.1.0.tar.gz.

File metadata

File hashes

Hashes for llama3_2_token_counter-0.1.0.tar.gz
Algorithm Hash digest
SHA256 22035f8adad75d3ddb865a5137259d6525d55439f952f09786a69ddb1b94cc05
MD5 e96ac2242395aa99012857dd4ad140b4
BLAKE2b-256 def6633c6ca1333156d011cc41195fd99d4f9c43fae1ac5fe9fce35f82f43957

See more details on using hashes here.

File details

Details for the file llama3.2_token_counter-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama3.2_token_counter-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 112b70367168b4f76b781a8ef20882f916feae9899396b091739d1cc4a2d7298
MD5 4f58e7d6a268c63b60f145a3b7133cfd
BLAKE2b-256 fb1e68cd654e2934ee1d61d1dddbfd3529584445d96484122c8c6ab35304d5a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page