Skip to main content

A simple token counter for Llama 3.2 models.

Project description

Llama 3.2 Token Counter

Python Version License

A simple and efficient token counter for Llama 3.2 models.

Description

The Llama 3.2 Token Counter is a Python package that provides an easy way to count tokens generated by Llama 3.2 models. This tool is essential for developers and researchers working with large language models, helping them manage token limits and optimize their use of the Llama 3.2 architecture.

Features

  • Accurate token counting for Llama 3.2 models
  • Easy-to-use Python API
  • Supports both string and list of strings inputs
  • Asynchronous token counting support
  • Batch processing for large inputs
  • Lightweight and efficient

Installation

You can install the Llama 3.2 Token Counter using pip:

pip install llama3.2-token-counter

Usage

Here's a quick example of how to use the Llama 3.2 Token Counter:

from llama_token_counter import LlamaTokenCounter
import asyncio

# Initialize the token counter
counter = LlamaTokenCounter()

# Synchronous token counting
text = "Hello, world! This is a sample text for token counting."
token_count = counter.count_tokens(text)
print(f"The text contains {token_count} tokens.")

# Asynchronous token counting
async def count_async():
    text = "This is an async token counting example."
    token_count = await counter.count_tokens(text)
    print(f"The async text contains {token_count} tokens.")

asyncio.run(count_async())

# Count tokens in a list of strings
texts = ["Hello, world!", "This is another sample.", "Multiple strings can be processed."]
token_count = counter.count_tokens(texts)
print(f"The list of texts contains {token_count} tokens in total.")

# Get the maximum token limit
max_tokens = counter.get_max_tokens()
print(f"The maximum token limit is {max_tokens}.")

# Batch processing for large lists
large_list = ["Text " + str(i) for i in range(10000)]
token_count = counter.count_tokens(large_list, batch_size=500)
print(f"The large list contains {token_count} tokens in total.")

Contributing

We welcome contributions to the Llama 3.2 Token Counter! If you'd like to contribute, please look at CONTRIBUTING.md for more information.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

Anthony - @anthoeknee

Project Link: https://github.com/anthoeknee/llama3.2-token-counter

Running Tests

To run the tests, follow these steps:

  1. Clone the repository:

    git clone https://github.com/yourusername/llama3.2-token-counter.git
    cd llama3.2-token-counter
    
  2. Install the development dependencies:

    pip install -r requirements.txt
    
  3. Run the tests:

    pytest tests
    

Make sure you have the necessary tokenizer files in the src/llama_token_counter/tokenizer directory before running the tests.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama3_2_token_counter-0.3.0.tar.gz (5.6 MB view details)

Uploaded Source

Built Distribution

llama3.2_token_counter-0.3.0-py3-none-any.whl (3.3 MB view details)

Uploaded Python 3

File details

Details for the file llama3_2_token_counter-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama3_2_token_counter-0.3.0.tar.gz
Algorithm Hash digest
SHA256 00ba4195e5071665e9947089222a8538d623af34e926afc81790ddd3e4adf8e9
MD5 b0aeab7f9ab9ed5eba0905b108090960
BLAKE2b-256 23c5baf47249100c21d49307c86ab1fed2cbe0b3327b6ee4ff3d71bbcc710244

See more details on using hashes here.

File details

Details for the file llama3.2_token_counter-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama3.2_token_counter-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9edd06c37589047336b8e47f421616470edc77d28ac72755e2e5315e83d205d0
MD5 de3802fcad331d0df2d9c6d726672d5d
BLAKE2b-256 7b22a3c91daed8cfae94fecc05cbcc171a5f76d4d07b242a90ed0f1a290fd433

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page