Skip to main content

AI-powered product growth platform with multi-LLM support

Project description

LlamaSearch ExperimentalAgents: Product Growth

Build Status Coverage Version License

A cutting-edge AI platform for analyzing customer feedback and generating data-driven growth strategies with multi-LLM support, MLX acceleration, and compelling visualizations.

✨ Features

  • Multi-LLM Router: Seamlessly switch between OpenAI, Anthropic, and local models with automatic fallbacks
  • Hardware-Accelerated NLP: Fast feedback analysis with MLX/JAX optimizations for Apple Silicon and other platforms
  • Strategy Generation: AI-powered growth strategy recommendations with priority levels and GTM approaches
  • Engaging Visualizations: Growth Garden and Insight Tree animations to present findings
  • Production Ready: Comprehensive testing, CI/CD pipelines, and documentation

📦 Installation

# Install with pip
pip install llamasearch-experimentalagents-product-growth

# For development version
pip install git+https://github.com/llamasearch/experimentalagents-product-growth.git

For Apple Silicon users, MLX acceleration is available:

pip install 'llamasearch-experimentalagents-product-growth[mlx]'

🔧 Configuration

Create a .env file based on the example:

cp .env.example .env

Configure your LLM providers:

# API Keys
OPENAI_API_KEY=your-openai-key
ANTHROPIC_API_KEY=your-anthropic-key

# Provider selection and fallback order
LLM_PROVIDERS=openai,anthropic,local
LLM_LOCAL_MODEL_PATH=/path/to/local/models

🚀 Quick Start

Analyze customer feedback and generate growth strategies:

# Analyze customer feedback
llamasearch analyze --feedback data.csv --output-dir ./insights

# Generate strategies using the multi-LLM router
llamasearch strategize --insights ./insights/analysis_results.json

# Visualize results
llamasearch visualize --data ./insights/strategies.json --type garden

🧠 LLM Router

The multi-LLM router enables seamless switching between different providers:

from llamasearch_experimentalagents_product_growth.core import (
    complete_prompt, analyze_text, chat_completion
)

# Simple completion (auto-selects the best available model)
response = complete_prompt(
    prompt="Analyze the strengths of this feature: widgets with AI enhancement",
    system_prompt="You are a product strategist."
)

# Specify a provider
response = complete_prompt(
    prompt="Summarize this feedback",
    provider="anthropic",
    model="claude-3-haiku"
)

# Advanced chat completion
messages = [
    {"role": "system", "content": "You are a product strategist."},
    {"role": "user", "content": "How can we improve user onboarding?"}
]
response = chat_completion(
    messages=messages,
    temperature=0.7
)

📊 Example

Analyze customer feedback:

from llamasearch_experimentalagents_product_growth.agents import analyze_feedback
import pandas as pd

# Load feedback data
feedback_df = pd.read_csv("customer_feedback.csv")

# Analyze feedback
results = analyze_feedback(
    feedback_df=feedback_df,
    text_column="comments",
    n_clusters=5,
    backend="auto"  # Automatically selects MLX on Apple Silicon
)

print(f"Identified {results['num_clusters']} feedback clusters")
print(f"Most positive cluster themes: {results['cluster_themes']['0']}")

Generate growth strategies:

from llamasearch_experimentalagents_product_growth.agents import generate_growth_strategies

# Generate strategies based on feedback analysis
strategies = generate_growth_strategies(
    analysis_results=results,
    max_strategies=5,
    provider="openai",  # Use OpenAI models
    model="gpt-4o"  # Specify model (optional)
)

# Display strategies
for strategy in strategies:
    print(f"Strategy: {strategy.feature}")
    print(f"Priority: {strategy.priority}")
    print(f"GTM Approaches: {', '.join(strategy.gtm_strategies)}")
    print(f"Expected Impact: {strategy.expected_impact}")
    print("---")

📚 Documentation

Full documentation is available at https://llamasearch.github.io/experimentalagents-product-growth

🧪 Testing

Run the test suite:

# Install dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run with coverage
pytest --cov=llamasearch_experimentalagents_product_growth

🤝 Contributing

Contributions are welcome! Please check out our contribution guidelines.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llamasearch_experimentalagents_product_growth-0.1.0.tar.gz.

File metadata

File hashes

Hashes for llamasearch_experimentalagents_product_growth-0.1.0.tar.gz
Algorithm Hash digest
SHA256 518dd19a4d2803ccb95e89838d1f9351933b0c7b0e992938807944b334a5d757
MD5 e015e6417860502feb51a9fa84cd3ad7
BLAKE2b-256 a6ade4842d591b7eb0ad2585b60791209a5a9efae4492431b19b97c3185da4fe

See more details on using hashes here.

File details

Details for the file llamasearch_experimentalagents_product_growth-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llamasearch_experimentalagents_product_growth-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 42cd6c9f90dcfd0109f8650ea9a0bb78c117cce867600df6318c9a405c74ca17
MD5 0c4bfedabc556733fc30e8385fcda4c5
BLAKE2b-256 3b57ae4ca303592d20a14f5678f39eb175731ac177b5391c3e6e12780dd2e55b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page