Microsoft Graph client
Project description
llamazure.msgraph : Microsoft Graph client
The llamazure.azgraph
package provides a usable client for the Microsoft Graph.
Benefits:
- no boilerplate
- easily navigate paginated queries
msgraph
Usage
Create a Graph
with the from_credential
and any of the standard Azure credentials.
from azure.identity import DefaultAzureCredential
from llamazure.msgraph.msgraph import Graph
g = Graph.from_credential(DefaultAzureCredential())
Querying
Make a simple query with the q
method, which will return your data directly:
>>> g.q("me")
Res(req=Req(query='me', options=QueryOpts(count=None, expand=set(), filter=None, format=None, orderby=None, search=None, select=None, skip=None, top=None)), odata={'@odata.context': 'https://graph.microsoft.com/v1.0/$metadata#users/$entity'}, value={...}, nextLink=None)
Or specify options with the query
method, which will return the full result object:
>>> from llamazure.msgraph.models import Req
>>> g.query(Req("me", options=QueryOpts(expand={"memberOf"})))
Res(req=Req(query='me', options=QueryOpts(count=None, expand={'memberOf'}, filter=None, format=None, orderby=None, search=None, select=None, skip=None, top=None)), odata={'@odata.context': 'https://graph.microsoft.com/v1.0/$metadata#users(memberOf())/$entity'}, value={...}, nextLink=None)
Retries
Every query can be automatically retried by the retry policy. You can modify this by setting the Graph.retry_policy
attribute:
g.retry_policy = RetryPolicy(retries=10)
Pagination
Pagination is handled automatically. If you want to manually paginate, you can manually walk the pages:
req = Req(query="users")
res0 = g.query_single(req)
res1 = g.query_next(req, res0)
res2 = g.query_next(req, res1)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llamazure.msgraph-0.1.0.tar.gz
.
File metadata
- Download URL: llamazure.msgraph-0.1.0.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30d0c518ea7504e7fa8e59c24aeff13d9b9ee3e8da82d990c4341f1b18005712 |
|
MD5 | 7134c40a9538dfee93525a7edeafc8b5 |
|
BLAKE2b-256 | 76483439f3745a6201fdc2ac0d09b1859cc72c1ce064973c1422b76c87a9cb55 |
Provenance
File details
Details for the file llamazure.msgraph-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: llamazure.msgraph-0.1.0-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60d9d8b0951964ee6cf7434ead6bdaa377b93d819532d274ae340ed095c2b458 |
|
MD5 | 3d9041ba7997768dbfe54b81e329d5d8 |
|
BLAKE2b-256 | 570120820892effe74fe14940ff9699e8d5ed600c3014f0716719e05a028b00e |