Skip to main content

An adaptive router for LLM model selection

Project description

LLM Adaptive Router

LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.

Features

  • Dynamic model selection based on query content
  • Efficient vector search for initial categorization
  • LLM-based fine-grained selection for complex cases
  • Adaptive learning from feedback
  • Flexible configuration of routes and models
  • Easy integration with LangChain and various LLM providers

Installation

You can install LLM Adaptive Router using pip:

pip3 install llm-adaptive-router

Quick Start

Here's a basic example of how to use LLM Adaptive Router:

from llm_adaptive_router import AdaptiveRouter, RouteMetadata
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from dotenv import load_dotenv
load_dotenv()

gpt_3_5_turbo = ChatOpenAI(model="gpt-3.5-turbo")
mini = ChatOpenAI(model="gpt-4o-mini")
gpt_4 = ChatOpenAI(model="gpt-4")

routes = {
    "general": RouteMetadata(
        invoker=gpt_3_5_turbo,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
    ),
    "mini": RouteMetadata(
        invoker=mini,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
        
    ),
    "math": RouteMetadata(
        invoker=gpt_4,
        capabilities=["advanced math", "problem solving"],
        cost=0.01,
        example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
    )
}

llm = ChatOpenAI(model="gpt-3.5-turbo")

router = AdaptiveRouter(
    vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
    llm=llm,
    embeddings=OpenAIEmbeddings(),
    routes=routes
)

query = "How are you"
query2 = "Write a Python function to hello world"
selected_model_route = router.route(query)
selected_model_name = selected_model_route
print(selected_model_name)
invoker = selected_model_route.invoker
response = invoker.invoke(query)

print(f"Response: {response}")

Detailed Usage

Creating Route Metadata

Use the create_route_metadata function to define routes:

from llm_adaptive_router import create_route_metadata

route = create_route_metadata(
    invoker=model_function,
    capabilities=["capability1", "capability2"],
    cost=0.01,
    example_sentences=["Example query 1", "Example query 2"],
    additional_info={"key": "value"}
)

Initializing the AdaptiveRouter

Create an instance of AdaptiveRouter with your configured routes:

router = AdaptiveRouter(
    vectorstore=your_vectorstore,
    llm=your_llm,
    embeddings=your_embeddings,
    routes=your_routes
)

Routing Queries

Use the route method to select the appropriate model for a query:

selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")

Adding Feedback

Improve the router's performance by providing feedback:

router.add_feedback(query, selected_model, performance_score)

Advanced Features

  • Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the VectorStore interface from LangChain.
  • Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
  • Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_adaptive_router-0.1.13.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

llm_adaptive_router-0.1.13-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file llm_adaptive_router-0.1.13.tar.gz.

File metadata

  • Download URL: llm_adaptive_router-0.1.13.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for llm_adaptive_router-0.1.13.tar.gz
Algorithm Hash digest
SHA256 99201bc35b184eaf060ae5a7ad52f2a302994b28a51e4bc245bcdf5791109723
MD5 70d3f7716f01fc610874b85e7f92df3f
BLAKE2b-256 a95bd69ab9caedfa5b11e9b7e72907a6d73e8d123a7eea7158c10d9328e5f0af

See more details on using hashes here.

File details

Details for the file llm_adaptive_router-0.1.13-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_adaptive_router-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 f7c5add71d88c6b2a66437e1979b2e665c7cfdd8a3c2fc7dbf8f728029a1fcf3
MD5 713d73040893f2f2a2a16acd8229af71
BLAKE2b-256 76b71aa4bf6f77ed92370a5b664b4eedcb640e80e367ca882863b51695fed12d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page