Skip to main content

An adaptive router for LLM model selection

Project description

LLM Adaptive Router

LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.

Features

  • Dynamic model selection based on query content
  • Efficient vector search for initial categorization
  • LLM-based fine-grained selection for complex cases
  • Adaptive learning from feedback
  • Flexible configuration of routes and models
  • Easy integration with LangChain and various LLM providers

Installation

You can install LLM Adaptive Router using pip:

pip3 install llm-adaptive-router

Quick Start

Here's a basic example of how to use LLM Adaptive Router:

from llm_adaptive_router import AdaptiveRouter, create_route_metadata
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI

# Initialize LLM models
gpt_3_5_turbo = ChatOpenAI("gpt-3.5-turbo", temperature=0)
codex = ChatOpenAI("codex", temperature=0)
gpt_4 = ChatOpenAI("gpt-4", temperature=0)

# Define routes
routes = {
    "general": create_route_metadata(
        model="gpt-3.5-turbo",
        invoker=gpt_3_5_turbo,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
    ),
    "code": create_route_metadata(
        model="codex",
        invoker=codex,
        capabilities=["code generation", "debugging"],
        cost=0.005,
        example_sentences=["Write a Python function to sort a list.", "Debug this JavaScript code."]
    ),
    "math": create_route_metadata(
        model="gpt-4",
        invoker=gpt_4,
        capabilities=["advanced math", "problem solving"],
        cost=0.01,
        example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
    )
}

# Initialize router
router = AdaptiveRouter(
    vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
    llm=ChatOpenAI("gpt-3.5-turbo", temperature=0),
    embeddings=OpenAIEmbeddings(),
    routes=routes
)

# Use the router
query = "Write a Python function to calculate the Fibonacci sequence"
selected_model_route = router.route(query)
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke(query)

print(f"Selected model: {selected_model_name}")
print(f"Response: {response}")

Detailed Usage

Creating Route Metadata

Use the create_route_metadata function to define routes:

from llm_adaptive_router import create_route_metadata

route = create_route_metadata(
    model="model_name",
    invoker=model_function,
    capabilities=["capability1", "capability2"],
    cost=0.01,
    example_sentences=["Example query 1", "Example query 2"],
    additional_info={"key": "value"}
)

Initializing the AdaptiveRouter

Create an instance of AdaptiveRouter with your configured routes:

router = AdaptiveRouter(
    vectorstore=your_vectorstore,
    llm=your_llm,
    embeddings=your_embeddings,
    routes=your_routes
)

Routing Queries

Use the route method to select the appropriate model for a query:

selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")

Adding Feedback

Improve the router's performance by providing feedback:

router.add_feedback(query, selected_model, performance_score)

Advanced Features

  • Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the VectorStore interface from LangChain.
  • Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
  • Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_adaptive_router-0.1.10.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

llm_adaptive_router-0.1.10-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file llm_adaptive_router-0.1.10.tar.gz.

File metadata

  • Download URL: llm_adaptive_router-0.1.10.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for llm_adaptive_router-0.1.10.tar.gz
Algorithm Hash digest
SHA256 96a0d75ce22dbeaaeec52cd8cebc1812cd1873f3e45137e2647fbc313297ea6f
MD5 45d001600be59d74c638a6a31bf2e680
BLAKE2b-256 12e4854ec017394317cd72667c704a872e762737f548dc3c27eb4d62b5345e07

See more details on using hashes here.

File details

Details for the file llm_adaptive_router-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_adaptive_router-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 bb66c0652b98e1744f060502b5952ee0ba370af6647e55fd958f7a13cfcd4e8a
MD5 2da4b12a4ab8c690f3976252c15968bd
BLAKE2b-256 75255e5e89a6b71bfa0d56deae0bddad40abcffb996d419d676ab25a2fb0f19a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page