Skip to main content

An adaptive router for LLM model selection

Project description

LLM Adaptive Router

LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.

Features

  • Dynamic model selection based on query content
  • Efficient vector search for initial categorization
  • LLM-based fine-grained selection for complex cases
  • Adaptive learning from feedback
  • Flexible configuration of routes and models
  • Easy integration with LangChain and various LLM providers

Installation

You can install LLM Adaptive Router using pip:

pip3 install llm-adaptive-router

Quick Start

Here's a basic example of how to use LLM Adaptive Router:

from llm_adaptive_router import AdaptiveRouter, create_route_metadata
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI

# Initialize LLM models
gpt_3_5_turbo = ChatOpenAI("gpt-3.5-turbo", temperature=0)
codex = ChatOpenAI("codex", temperature=0)
gpt_4 = ChatOpenAI("gpt-4", temperature=0)

# Define routes
routes = {
    "general": create_route_metadata(
        model="gpt-3.5-turbo",
        invoker=gpt_3_5_turbo,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
    ),
    "code": create_route_metadata(
        model="codex",
        invoker=codex,
        capabilities=["code generation", "debugging"],
        cost=0.005,
        example_sentences=["Write a Python function to sort a list.", "Debug this JavaScript code."]
    ),
    "math": create_route_metadata(
        model="gpt-4",
        invoker=gpt_4,
        capabilities=["advanced math", "problem solving"],
        cost=0.01,
        example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
    )
}

# Initialize router
router = AdaptiveRouter(
    vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
    llm=ChatOpenAI("gpt-3.5-turbo", temperature=0),
    embeddings=OpenAIEmbeddings(),
    routes=routes
)

# Use the router
query = "Write a Python function to calculate the Fibonacci sequence"
selected_model_route = router.route(query)
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke(query)

print(f"Selected model: {selected_model_name}")
print(f"Response: {response}")

Detailed Usage

Creating Route Metadata

Use the create_route_metadata function to define routes:

from llm_adaptive_router import create_route_metadata

route = create_route_metadata(
    model="model_name",
    invoker=model_function,
    capabilities=["capability1", "capability2"],
    cost=0.01,
    example_sentences=["Example query 1", "Example query 2"],
    additional_info={"key": "value"}
)

Initializing the AdaptiveRouter

Create an instance of AdaptiveRouter with your configured routes:

router = AdaptiveRouter(
    vectorstore=your_vectorstore,
    llm=your_llm,
    embeddings=your_embeddings,
    routes=your_routes
)

Routing Queries

Use the route method to select the appropriate model for a query:

selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")

Adding Feedback

Improve the router's performance by providing feedback:

router.add_feedback(query, selected_model, performance_score)

Advanced Features

  • Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the VectorStore interface from LangChain.
  • Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
  • Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_adaptive_router-0.1.3.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

llm_adaptive_router-0.1.3-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file llm_adaptive_router-0.1.3.tar.gz.

File metadata

  • Download URL: llm_adaptive_router-0.1.3.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for llm_adaptive_router-0.1.3.tar.gz
Algorithm Hash digest
SHA256 33aac3f8c09309756e213cf0184b37a1757a38c425ea29bd18b51ee64b555a6d
MD5 6327568550d4dc0f2cd85a2b15aab839
BLAKE2b-256 eea393e3090d38f6b0f5fabc5851849081575de856e72ac5c15d1ec2edd9f0b0

See more details on using hashes here.

File details

Details for the file llm_adaptive_router-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_adaptive_router-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3bc5a1bcaec816af06e4ed9e1580bf1466d42609643d7d36d4eb34ac49303746
MD5 742fb1119e965c24bdbfca77393df3b4
BLAKE2b-256 6e8febd08e03cc6facf1af0cea2a5ac23c149d2bf23dbd2da869c15b44f81fdd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page