Skip to main content

An adaptive router for LLM model selection

Project description

LLM Adaptive Router

LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.

Features

  • Dynamic model selection based on query content
  • Efficient vector search for initial categorization
  • LLM-based fine-grained selection for complex cases
  • Adaptive learning from feedback
  • Flexible configuration of routes and models
  • Easy integration with LangChain and various LLM providers

Installation

You can install LLM Adaptive Router using pip:

pip3 install llm-adaptive-router

Quick Start

Here's a basic example of how to use LLM Adaptive Router:

from llm_adaptive_router import AdaptiveRouter, create_route_metadata
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI

# Initialize LLM models
gpt_3_5_turbo = ChatOpenAI("gpt-3.5-turbo", temperature=0)
codex = ChatOpenAI("codex", temperature=0)
gpt_4 = ChatOpenAI("gpt-4", temperature=0)

# Define routes
routes = {
    "general": create_route_metadata(
        model="gpt-3.5-turbo",
        invoker=gpt_3_5_turbo,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
    ),
    "code": create_route_metadata(
        model="codex",
        invoker=codex,
        capabilities=["code generation", "debugging"],
        cost=0.005,
        example_sentences=["Write a Python function to sort a list.", "Debug this JavaScript code."]
    ),
    "math": create_route_metadata(
        model="gpt-4",
        invoker=gpt_4,
        capabilities=["advanced math", "problem solving"],
        cost=0.01,
        example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
    )
}

# Initialize router
router = AdaptiveRouter(
    vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
    llm=ChatOpenAI("gpt-3.5-turbo", temperature=0),
    embeddings=OpenAIEmbeddings(),
    routes=routes
)

# Use the router
query = "Write a Python function to calculate the Fibonacci sequence"
selected_model_route = router.route(query)
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke(query)

print(f"Selected model: {selected_model_name}")
print(f"Response: {response}")

Detailed Usage

Creating Route Metadata

Use the create_route_metadata function to define routes:

from llm_adaptive_router import create_route_metadata

route = create_route_metadata(
    model="model_name",
    invoker=model_function,
    capabilities=["capability1", "capability2"],
    cost=0.01,
    example_sentences=["Example query 1", "Example query 2"],
    additional_info={"key": "value"}
)

Initializing the AdaptiveRouter

Create an instance of AdaptiveRouter with your configured routes:

router = AdaptiveRouter(
    vectorstore=your_vectorstore,
    llm=your_llm,
    embeddings=your_embeddings,
    routes=your_routes
)

Routing Queries

Use the route method to select the appropriate model for a query:

selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")

Adding Feedback

Improve the router's performance by providing feedback:

router.add_feedback(query, selected_model, performance_score)

Advanced Features

  • Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the VectorStore interface from LangChain.
  • Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
  • Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_adaptive_router-0.1.4.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

llm_adaptive_router-0.1.4-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file llm_adaptive_router-0.1.4.tar.gz.

File metadata

  • Download URL: llm_adaptive_router-0.1.4.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for llm_adaptive_router-0.1.4.tar.gz
Algorithm Hash digest
SHA256 c84fa46a65a00cd947e736a6f6a37087589dbe41d9d0693a5e8bb591db969c93
MD5 5860e9dcaa3d788fe720d86cea619ee8
BLAKE2b-256 b486f302446d265f3c197df64cdb8b149e6b70ea8461756716d1d165498bb05a

See more details on using hashes here.

File details

Details for the file llm_adaptive_router-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_adaptive_router-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 7881acc9652f25b85f74b7d52967a7d897ccee647e3e5c0d6b4dd474752d0b42
MD5 50acbef884e5a7643bb0495e4cd0f61a
BLAKE2b-256 a752935270f716a56ed81e98a3c26d6018b81285ce2f28c8f4b0cf82163dd04d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page