An adaptive router for LLM model selection
Project description
LLM Adaptive Router
LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.
Features
- Dynamic model selection based on query content
- Efficient vector search for initial categorization
- LLM-based fine-grained selection for complex cases
- Adaptive learning from feedback
- Flexible configuration of routes and models
- Easy integration with LangChain and various LLM providers
Installation
You can install LLM Adaptive Router using pip:
pip3 install llm-adaptive-router
Quick Start
Here's a basic example of how to use LLM Adaptive Router:
from llm_adaptive_router import AdaptiveRouter, create_route_metadata
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
# Initialize LLM models
gpt_3_5_turbo = ChatOpenAI("gpt-3.5-turbo", temperature=0)
codex = ChatOpenAI("codex", temperature=0)
gpt_4 = ChatOpenAI("gpt-4", temperature=0)
# Define routes
routes = {
"general": create_route_metadata(
model="gpt-3.5-turbo",
invoker=gpt_3_5_turbo,
capabilities=["general knowledge"],
cost=0.002,
example_sentences=["What is the capital of France?", "Explain photosynthesis."]
),
"code": create_route_metadata(
model="codex",
invoker=codex,
capabilities=["code generation", "debugging"],
cost=0.005,
example_sentences=["Write a Python function to sort a list.", "Debug this JavaScript code."]
),
"math": create_route_metadata(
model="gpt-4",
invoker=gpt_4,
capabilities=["advanced math", "problem solving"],
cost=0.01,
example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
)
}
# Initialize router
router = AdaptiveRouter(
vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
llm=ChatOpenAI("gpt-3.5-turbo", temperature=0),
embeddings=OpenAIEmbeddings(),
routes=routes
)
# Use the router
query = "Write a Python function to calculate the Fibonacci sequence"
selected_model_route = router.route(query)
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke(query)
print(f"Selected model: {selected_model_name}")
print(f"Response: {response}")
Detailed Usage
Creating Route Metadata
Use the create_route_metadata
function to define routes:
from llm_adaptive_router import create_route_metadata
route = create_route_metadata(
model="model_name",
invoker=model_function,
capabilities=["capability1", "capability2"],
cost=0.01,
example_sentences=["Example query 1", "Example query 2"],
additional_info={"key": "value"}
)
Initializing the AdaptiveRouter
Create an instance of AdaptiveRouter
with your configured routes:
router = AdaptiveRouter(
vectorstore=your_vectorstore,
llm=your_llm,
embeddings=your_embeddings,
routes=your_routes
)
Routing Queries
Use the route
method to select the appropriate model for a query:
selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")
Adding Feedback
Improve the router's performance by providing feedback:
router.add_feedback(query, selected_model, performance_score)
Advanced Features
- Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the
VectorStore
interface from LangChain. - Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
- Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llm_adaptive_router-0.1.4.tar.gz
.
File metadata
- Download URL: llm_adaptive_router-0.1.4.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c84fa46a65a00cd947e736a6f6a37087589dbe41d9d0693a5e8bb591db969c93 |
|
MD5 | 5860e9dcaa3d788fe720d86cea619ee8 |
|
BLAKE2b-256 | b486f302446d265f3c197df64cdb8b149e6b70ea8461756716d1d165498bb05a |
File details
Details for the file llm_adaptive_router-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: llm_adaptive_router-0.1.4-py3-none-any.whl
- Upload date:
- Size: 10.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7881acc9652f25b85f74b7d52967a7d897ccee647e3e5c0d6b4dd474752d0b42 |
|
MD5 | 50acbef884e5a7643bb0495e4cd0f61a |
|
BLAKE2b-256 | a752935270f716a56ed81e98a3c26d6018b81285ce2f28c8f4b0cf82163dd04d |