Skip to main content

An adaptive router for LLM model selection

Project description

LLM Adaptive Router

LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.

Features

  • Dynamic model selection based on query content
  • Efficient vector search for initial categorization
  • LLM-based fine-grained selection for complex cases
  • Adaptive learning from feedback
  • Flexible configuration of routes and models
  • Easy integration with LangChain and various LLM providers

Installation

You can install LLM Adaptive Router using pip:

pip3 install llm-adaptive-router

Quick Start

Here's a basic example of how to use LLM Adaptive Router:

from llm_adaptive_router import AdaptiveRouter, create_route_metadata
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI

# Initialize LLM models
gpt_3_5_turbo = ChatOpenAI("gpt-3.5-turbo", temperature=0)
codex = ChatOpenAI("codex", temperature=0)
gpt_4 = ChatOpenAI("gpt-4", temperature=0)

# Define routes
routes = {
    "general": create_route_metadata(
        model="gpt-3.5-turbo",
        invoker=gpt_3_5_turbo,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
    ),
    "code": create_route_metadata(
        model="codex",
        invoker=codex,
        capabilities=["code generation", "debugging"],
        cost=0.005,
        example_sentences=["Write a Python function to sort a list.", "Debug this JavaScript code."]
    ),
    "math": create_route_metadata(
        model="gpt-4",
        invoker=gpt_4,
        capabilities=["advanced math", "problem solving"],
        cost=0.01,
        example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
    )
}

# Initialize router
router = AdaptiveRouter(
    vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
    llm=ChatOpenAI("gpt-3.5-turbo", temperature=0),
    embeddings=OpenAIEmbeddings(),
    routes=routes
)

# Use the router
query = "Write a Python function to calculate the Fibonacci sequence"
selected_model_route = router.route(query)
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke(query)

print(f"Selected model: {selected_model_name}")
print(f"Response: {response}")

Detailed Usage

Creating Route Metadata

Use the create_route_metadata function to define routes:

from llm_adaptive_router import create_route_metadata

route = create_route_metadata(
    model="model_name",
    invoker=model_function,
    capabilities=["capability1", "capability2"],
    cost=0.01,
    example_sentences=["Example query 1", "Example query 2"],
    additional_info={"key": "value"}
)

Initializing the AdaptiveRouter

Create an instance of AdaptiveRouter with your configured routes:

router = AdaptiveRouter(
    vectorstore=your_vectorstore,
    llm=your_llm,
    embeddings=your_embeddings,
    routes=your_routes
)

Routing Queries

Use the route method to select the appropriate model for a query:

selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")

Adding Feedback

Improve the router's performance by providing feedback:

router.add_feedback(query, selected_model, performance_score)

Advanced Features

  • Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the VectorStore interface from LangChain.
  • Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
  • Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_adaptive_router-0.1.5.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

llm_adaptive_router-0.1.5-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file llm_adaptive_router-0.1.5.tar.gz.

File metadata

  • Download URL: llm_adaptive_router-0.1.5.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for llm_adaptive_router-0.1.5.tar.gz
Algorithm Hash digest
SHA256 b1485b4491a78e00dca3fd7b6d29a7c26b92136cde627afafec7c7cb3561a0e0
MD5 2165bd0319b2634b05f5f50eca55d23d
BLAKE2b-256 23f1c0e134e5c7bef9322303018ef23f9951eb76df9721f63d8ee3519ad74df7

See more details on using hashes here.

File details

Details for the file llm_adaptive_router-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_adaptive_router-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f577988151733b340ce287ae5157ae15447d2621b5344b54472d063ba11913a5
MD5 19b275762ef985ae5565e34486297fb6
BLAKE2b-256 b4374ec71a48c20ec680f369d7aa8009dc7a8ae7dee7b84b544357ddc0740629

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page