Skip to main content

An adaptive router for LLM model selection

Project description

LLM Adaptive Router

LLM Adaptive Router is a Python package that enables dynamic model selection based on query content. It uses efficient vector search for initial categorization and LLM-based fine-grained selection for complex cases. The router can adapt and learn from feedback, making it suitable for a wide range of applications.

Features

  • Dynamic model selection based on query content
  • Efficient vector search for initial categorization
  • LLM-based fine-grained selection for complex cases
  • Adaptive learning from feedback
  • Flexible configuration of routes and models
  • Easy integration with LangChain and various LLM providers

Installation

You can install LLM Adaptive Router using pip:

pip3 install llm-adaptive-router

Quick Start

Here's a basic example of how to use LLM Adaptive Router:

from llm_adaptive_router import AdaptiveRouter, create_route_metadata
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI

# Initialize LLM models
gpt_3_5_turbo = ChatOpenAI("gpt-3.5-turbo", temperature=0)
codex = ChatOpenAI("codex", temperature=0)
gpt_4 = ChatOpenAI("gpt-4", temperature=0)

# Define routes
routes = {
    "general": create_route_metadata(
        model="gpt-3.5-turbo",
        invoker=gpt_3_5_turbo,
        capabilities=["general knowledge"],
        cost=0.002,
        example_sentences=["What is the capital of France?", "Explain photosynthesis."]
    ),
    "code": create_route_metadata(
        model="codex",
        invoker=codex,
        capabilities=["code generation", "debugging"],
        cost=0.005,
        example_sentences=["Write a Python function to sort a list.", "Debug this JavaScript code."]
    ),
    "math": create_route_metadata(
        model="gpt-4",
        invoker=gpt_4,
        capabilities=["advanced math", "problem solving"],
        cost=0.01,
        example_sentences=["Solve this differential equation.", "Prove the Pythagorean theorem."]
    )
}

# Initialize router
router = AdaptiveRouter(
    vectorstore=Chroma(embedding_function=OpenAIEmbeddings()),
    llm=ChatOpenAI("gpt-3.5-turbo", temperature=0),
    embeddings=OpenAIEmbeddings(),
    routes=routes
)

# Use the router
query = "Write a Python function to calculate the Fibonacci sequence"
selected_model_route = router.route(query)
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke(query)

print(f"Selected model: {selected_model_name}")
print(f"Response: {response}")

Detailed Usage

Creating Route Metadata

Use the create_route_metadata function to define routes:

from llm_adaptive_router import create_route_metadata

route = create_route_metadata(
    model="model_name",
    invoker=model_function,
    capabilities=["capability1", "capability2"],
    cost=0.01,
    example_sentences=["Example query 1", "Example query 2"],
    additional_info={"key": "value"}
)

Initializing the AdaptiveRouter

Create an instance of AdaptiveRouter with your configured routes:

router = AdaptiveRouter(
    vectorstore=your_vectorstore,
    llm=your_llm,
    embeddings=your_embeddings,
    routes=your_routes
)

Routing Queries

Use the route method to select the appropriate model for a query:

selected_model_route = router.route("Your query here")
selected_model_name = selected_model_route.model
invoker = selected_model_route.invoker
response = invoker.invoke("Your query here")

Adding Feedback

Improve the router's performance by providing feedback:

router.add_feedback(query, selected_model, performance_score)

Advanced Features

  • Custom Vector Stores: LLM Adaptive Router supports various vector stores. You can use any vector store that implements the VectorStore interface from LangChain.
  • Dynamic Route Updates: You can add or remove routes dynamically:
router.add_route("new_route", new_route_metadata)
router.remove_route("old_route")
  • Adjusting Router Behavior: Fine-tune the router's behavior:
router.set_complexity_threshold(0.8)
router.set_update_frequency(200)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_adaptive_router-0.1.7.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

llm_adaptive_router-0.1.7-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file llm_adaptive_router-0.1.7.tar.gz.

File metadata

  • Download URL: llm_adaptive_router-0.1.7.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for llm_adaptive_router-0.1.7.tar.gz
Algorithm Hash digest
SHA256 c14d027593d296a32153e816db03c165f623cf52075f6a702d88008729c94120
MD5 c59955fb9a7867546030f7c082631e0c
BLAKE2b-256 b9e585153e22f49515919d15ae7912f4d0589ea56e66a7f1c114226a5edfefbb

See more details on using hashes here.

File details

Details for the file llm_adaptive_router-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_adaptive_router-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1f343c68c1fbb7fa2e54daa970090bd1687037b21712c7d36c18acf7cf25504e
MD5 58d684ec6e49c6a35240ff1bd8aa3c08
BLAKE2b-256 0465e844ace6f77027d1b31bac2362ddf079122993906098c188038579e5dde3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page