Skip to main content

LLM Benchmarking tool for OLLAMA

Project description

llm-benchmark (ollama-benchmark)

LLM Benchmark for Throughput via Ollama (Local LLMs)

Installation Steps

pip install llm-bench

Usage for general users directly

llm_bench run

ollama installation with the following models installed

7B model can be run on machines with 8GB of RAM

13B model can be run on machines with 16GB of RAM

Usage explaination

On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.

When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.

ollama pull gemma:2b

When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llava:7b

When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llama2:13b
ollama pull llava:7b
ollama pull llava:13b

Python Poetry manually(advanced) installation

https://python-poetry.org/docs/#installing-manually

For developers to develop new features on Windows Powershell or on Ubuntu Linux or macOS

python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry

Usage in Python virtual environment

poetry shell
poetry install
llm_benchmark hello jason

Example #1 send systeminfo and benchmark results to a remote server

llm_bench run

Example #2 Do not send systeminfo and benchmark results to a remote server

llm_bench run --no-sendinfo

Example #3 Benchmark run on explicitly given the path to the ollama executable (When you built your own developer version of ollama)

llm_bench run --ollamabin=~/code/ollama/ollama

Reference

Ollama

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_bench-0.4.29.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

llm_bench-0.4.29-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file llm_bench-0.4.29.tar.gz.

File metadata

  • Download URL: llm_bench-0.4.29.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for llm_bench-0.4.29.tar.gz
Algorithm Hash digest
SHA256 1a494958cab42241b4936376c1128f3f7c8218dba356f50ce981e3eaaa4b0ddf
MD5 28657f1c834dd363299d9a4b9f39f56d
BLAKE2b-256 3d33f6b57ce0184f55fc89a9c2b3a26ce6691e8e1c7aef250b50d35b61a060b0

See more details on using hashes here.

File details

Details for the file llm_bench-0.4.29-py3-none-any.whl.

File metadata

  • Download URL: llm_bench-0.4.29-py3-none-any.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for llm_bench-0.4.29-py3-none-any.whl
Algorithm Hash digest
SHA256 41732971ed4aaf9ba7302c8e660d5fa04fa382dc1145e6dd79191f3f814bfff2
MD5 1b9fd92eaf1c7d2cb40356aa6179af2d
BLAKE2b-256 3fb295d8f34752fa0149d8c5fe1c06e42b5aa346f51ba651d66be443344730a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page