Skip to main content

LLM Benchmarking tool for OLLAMA

Project description

llm-benchmark (ollama-benchmark)

LLM Benchmark for Throughput via Ollama (Local LLMs)

Installation Steps

pip install llm-bench

Usage for general users directly

llm_bench run

ollama installation with the following models installed

7B model can be run on machines with 8GB of RAM

13B model can be run on machines with 16GB of RAM

Usage explaination

On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.

When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.

ollama pull gemma:2b

When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llava:7b

When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llama2:13b
ollama pull llava:7b
ollama pull llava:13b

Python Poetry manually(advanced) installation

https://python-poetry.org/docs/#installing-manually

For developers to develop new features on Windows Powershell or on Ubuntu Linux or macOS

python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry

Usage in Python virtual environment

poetry shell
poetry install
llm_benchmark hello jason

Example #1 send systeminfo and benchmark results to a remote server

llm_bench run

Example #2 Do not send systeminfo and benchmark results to a remote server

llm_bench run --no-sendinfo

Example #3 Benchmark run on explicitly given the path to the ollama executable (When you built your own developer version of ollama)

llm_bench run --ollamabin=~/code/ollama/ollama

Reference

Ollama

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_bench-0.4.30.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

llm_bench-0.4.30-py3-none-any.whl (19.9 kB view details)

Uploaded Python 3

File details

Details for the file llm_bench-0.4.30.tar.gz.

File metadata

  • Download URL: llm_bench-0.4.30.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for llm_bench-0.4.30.tar.gz
Algorithm Hash digest
SHA256 83ae6096d48fa4e4dc02d9b6d92ee9b53aab464c46ef971aa8c445508ba3aa16
MD5 2af0749109b4678a496fe1831ffdd6be
BLAKE2b-256 7b940e3dff5a5961fea3f3cb78585fe81e50150ab5191471ec0b55557d78f632

See more details on using hashes here.

File details

Details for the file llm_bench-0.4.30-py3-none-any.whl.

File metadata

  • Download URL: llm_bench-0.4.30-py3-none-any.whl
  • Upload date:
  • Size: 19.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for llm_bench-0.4.30-py3-none-any.whl
Algorithm Hash digest
SHA256 cdf9ee81b7f3c3a03c1d610428ab232bc53054c952a9012578fda1e4c79c1e3e
MD5 2ee60377b75d92a55fcfaf7543c5938c
BLAKE2b-256 efcb3d39f845876303749a2e4eb59d2e160107792c39346ec870bd05c4175fc7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page