Skip to main content

LLM Benchmarking tool for OLLAMA

Project description

llm-benchmark (ollama-benchmark)

LLM Benchmark for Throughput via Ollama (Local LLMs)

Installation Steps

pip install llm-bench

Usage for general users directly

llm_bench run

ollama installation with the following models installed

7B model can be run on machines with 8GB of RAM

13B model can be run on machines with 16GB of RAM

Usage explaination

On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.

When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.

ollama pull gemma:2b

When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llava:7b

When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llama2:13b
ollama pull llava:7b
ollama pull llava:13b

Python Poetry manually(advanced) installation

https://python-poetry.org/docs/#installing-manually

For developers to develop new features on Windows Powershell or on Ubuntu Linux or macOS

python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry

Usage in Python virtual environment

poetry shell
poetry install
llm_benchmark hello jason

Example #1 send systeminfo and benchmark results to a remote server

llm_bench run

Example #2 Do not send systeminfo and benchmark results to a remote server

llm_bench run --no-sendinfo

Example #3 Benchmark run on explicitly given the path to the ollama executable (When you built your own developer version of ollama)

llm_bench run --ollamabin=~/code/ollama/ollama

Reference

Ollama

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_bench-0.4.31.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

llm_bench-0.4.31-py3-none-any.whl (19.9 kB view details)

Uploaded Python 3

File details

Details for the file llm_bench-0.4.31.tar.gz.

File metadata

  • Download URL: llm_bench-0.4.31.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for llm_bench-0.4.31.tar.gz
Algorithm Hash digest
SHA256 bd5b261bb31cd6b0cb97849a611e7466509e19f77f6b267dfb11dd2e92f6783c
MD5 3aecc506ed23157efecd145ebbc5b8e5
BLAKE2b-256 f7250bd3e4aff748ffa72a6e4812c3f67f2e62784e73db11e66825d7f359e6dd

See more details on using hashes here.

File details

Details for the file llm_bench-0.4.31-py3-none-any.whl.

File metadata

  • Download URL: llm_bench-0.4.31-py3-none-any.whl
  • Upload date:
  • Size: 19.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for llm_bench-0.4.31-py3-none-any.whl
Algorithm Hash digest
SHA256 e555857a3a315822560cbd64d66d49c59989bd59d0c89b3c648cf8ffae21f66a
MD5 fbd1d5b7037dc03fe5ab85477c873dfe
BLAKE2b-256 f64f3a834d479227a065574edad9ee3b2b8b2565b1f115df5ec42484d0a92b3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page