Skip to main content

LLM Benchmark for Throughputs via Ollama

Project description

llm-benchmark (ollama-benchmark)

LLM Benchmark for Throughput via Ollama (Local LLMs)

Installation Steps

pip install llm-benchmark

Usage for general users directly

llm_benchmark run

Installation and Usage in Video format

llm-benchmark

It's tested on Python 3.9 and above.

ollama installation with the following models installed

7B model can be run on machines with 8GB of RAM

13B model can be run on machines with 16GB of RAM

Usage explaination

On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.

When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.

ollama pull qwen:1.8b
ollama pull gemma:2b
ollama pull phi:2.7b
ollama pull phi3:3.8b

When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull phi3:3.8b
ollama pull qwen2:7b
ollama pull gemma2:9b
ollama pull mistral:7b
ollama pull llama3.1:8b
ollama pull llava:7b

When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull phi3:3.8b
ollama pull qwen2:7b
ollama pull gemma2:9b
ollama pull mistral:7b
ollama pull llama3.1:8b
ollama pull llava:7b
ollama pull llava:13b

Python Poetry manually(advanced) installation

https://python-poetry.org/docs/#installing-manually

For developers to develop new features on Windows Powershell or on Ubuntu Linux or macOS

python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry

Usage in Python virtual environment

poetry shell
poetry install
llm_benchmark hello jason

Example #1 send systeminfo and benchmark results to a remote server

llm_benchmark run

Example #2 Do not send systeminfo and benchmark results to a remote server

llm_benchmark run --no-sendinfo

Example #3 Benchmark run on explicitly given the path to the ollama executable (When you built your own developer version of ollama)

llm_benchmark run --ollamabin=~/code/ollama/ollama

Reference

Ollama

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_benchmark-0.3.22.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

llm_benchmark-0.3.22-py3-none-any.whl (2.1 MB view details)

Uploaded Python 3

File details

Details for the file llm_benchmark-0.3.22.tar.gz.

File metadata

  • Download URL: llm_benchmark-0.3.22.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for llm_benchmark-0.3.22.tar.gz
Algorithm Hash digest
SHA256 0eb0889333a4f34b785ff1ca1d4c973bc3173ea4722464aaf744db972b8baa34
MD5 42141d4549869fcd4d9e1bc6fa1a7aad
BLAKE2b-256 3632eee5e1231d988fb58070f15ebbdde8ae2e0f54ca6d0acdb1ea06efd9606c

See more details on using hashes here.

File details

Details for the file llm_benchmark-0.3.22-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_benchmark-0.3.22-py3-none-any.whl
Algorithm Hash digest
SHA256 f92e12c24e3f3bae47f23d3d6dbf905549753c7b5f3fbf39d98ebcff664088ed
MD5 83ae95f865f9a55f331ab638a0d4c798
BLAKE2b-256 a90a320aa5392488ad53fb74fccc8ad1369a9a09ca573610156a7416a5c90614

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page