LLM Connect API
Project description
LLMConnect API
Table of Contents
Introduction
LLMConnect API is a developer-friendly Python-based CLI utility designed to manage and evaluate Language Models including LLMs and SLMs on local servers or clusters. It enables users to run a variety of standard and custom tasks with popular models such as Llama-2, Mistral, Falcon, etc., and also supports the integration of new LLMs.
Features
- Task Versatility: Execute predefined tasks like NER, Sentiment Analysis, Summarisation, or craft your own.
- Model Selection: Choose and add your custom LLMs and SLMs from HuggingFace.
- Adaptable Environments: Operate seamlessly on local servers and extend to local network clusters.
- Hardware Compatibility: Ensure efficient LLM functioning with GPU compatibility checks and memory monitoring.
CLI Interface:
- Navigate tasks, models, and hardware diagnostics with simple, intuitive commands.
Development & Security:
- Developed in Python 3.x, emphasising seamless LLM integration, and detailed documentation.
- Features enhanced input validation for secure, reliable operations.
Deployment:
- Eager to experience the power of Large Language Models through a Python-based Command Line Interface? LLMConnect API is your gateway to harnessing this technology on your local systems!
Installation
Required libraries
- Python 3.10
- click==8.1.7
- setuptools~=68.2.0
- transformers
- torch~=2.1.0
- accelerate
- bitsandbytes
- colorama
Commands
- lc list
List all available tasks or models.
Usage:
lc list [OPTIONS] COMMAND [ARGS]
Options:
-h, --help Show this message and exit.
Commands:
models List available models
tasks List available tasks
- lc add
Add new Hugging Face Model.
Usage:
lc add [OPTIONS]
Model format: repo_id/model_id
Options:
--model TEXT [required]
-h, --help Show this message and exit.
- lc remove
Remove an existing HuggingFace Model.
Usage:
lc remove [OPTIONS]
Model format: repo_id/model_id
Options:
--model TEXT [required]
-h, --help Show this message and exit.
- lc hardware
Check hardware compatibility for given Hugging Face model.
Usage:
lc hardware [OPTIONS]
Model format: repo_id/model_id.
Options:
--model TEXT Model name in format: repoID/modelID [required]
-h, --help Show this message and exit.
- lc exec
Execute an input prompt with given model and given task.
Usage:
lc exec [OPTIONS]
Options:
--task TEXT Specify the task name [required]
--model TEXT Specify the model name (repoID/modelID) [required]
--input TEXT Specify input text (optional)
-h, --help Show this message and exit.
- lc fetch
Fetch the logs of previous sessions.
Usage:
lc fetch [OPTIONS]
Options:
-h, --help Show this message and exit.
Predefined tasks
Command
lc list tasks
Output
Available Tasks:
- NER
- Summary
- AnalyseSentiment
- DetectBias
- TagTopic
- Custom
Command examples
- lc list models
- lc list tasks
- lc add --model ceadar-ie/FinanceConnect-13B
- lc remove --model ceadar-ie/FinanceConnect-13B
- lc hardware --model ceadar-ie/FinanceConnect-13B
- lc exec --task NER --model ceadar-ie/FinanceConnect-13B --input "Hi! I'm LLMConnect API"
- lc fetch
Author
CeADAR Connect Group
License
APACHE 2.0
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
llm_connect-1.1.3.tar.gz
(7.9 kB
view details)
Built Distribution
File details
Details for the file llm_connect-1.1.3.tar.gz
.
File metadata
- Download URL: llm_connect-1.1.3.tar.gz
- Upload date:
- Size: 7.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 229c492d347cdf65b6f5412999c3bf5bb5641f535c16617340c21a0f1633a208 |
|
MD5 | b7748fcce1632f79bb92cdda7a9431b9 |
|
BLAKE2b-256 | c144be00512e68b33e41f638f2d69e1d86def59546c5d6edabb9a56b90e513e7 |
File details
Details for the file llm_connect-1.1.3-py3-none-any.whl
.
File metadata
- Download URL: llm_connect-1.1.3-py3-none-any.whl
- Upload date:
- Size: 13.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 239a9fd185ca83828fb37845bb1fad7081f93d4aec4b1a80a57d12d8777313cd |
|
MD5 | af1a3efea2215fc41cf66d63762de92b |
|
BLAKE2b-256 | ec84083df9fbadd32b1e1ed1ea58b597878ff366a8259e4e57b03dfcaf7348a8 |