Skip to main content

LLM Connect API

Project description

LLMConnect API

Table of Contents

Introduction

LLMConnect API is a developer-friendly Python-based CLI utility designed to manage and evaluate Language Models including LLMs and SLMs on local servers or clusters. It enables users to run a variety of standard and custom tasks with popular models such as Llama-2, Mistral, Falcon, etc., and also supports the integration of new LLMs.

Features

  • Task Versatility: Execute predefined tasks like NER, Sentiment Analysis, Summarisation, or craft your own.
  • Model Selection: Choose and add your custom LLMs and SLMs from HuggingFace.
  • Adaptable Environments: Operate seamlessly on local servers and extend to local network clusters.
  • Hardware Compatibility: Ensure efficient LLM functioning with GPU compatibility checks and memory monitoring.

CLI Interface:

  • Navigate tasks, models, and hardware diagnostics with simple, intuitive commands.

Development & Security:

  • Developed in Python 3.x, emphasising seamless LLM integration, and detailed documentation.
  • Features enhanced input validation for secure, reliable operations.

Deployment:

  • Eager to experience the power of Large Language Models through a Python-based Command Line Interface? LLMConnect API is your gateway to harnessing this technology on your local systems!

Installation

Required libraries

  • Python 3.10
  • click==8.1.7
  • setuptools~=68.2.0
  • transformers
  • torch~=2.1.0
  • accelerate
  • bitsandbytes
  • colorama

Commands

  • lc list
List all available tasks or models.

  Usage:
    lc list [OPTIONS] COMMAND [ARGS]

  Options:
    -h, --help  Show this message and exit.

  Commands:
    models  List available models
    tasks   List available tasks
  • lc add
Add new Hugging Face Model. 

  Usage:
    lc add [OPTIONS]
    Model format: repo_id/model_id

  Options:
    --model TEXT  [required]
    -h, --help    Show this message and exit.
  • lc remove
  Remove an existing HuggingFace Model.

  Usage:
    lc remove [OPTIONS]
    Model format: repo_id/model_id

  Options:
    --model TEXT  [required]
    -h, --help    Show this message and exit.
  • lc hardware
Check hardware compatibility for given Hugging Face model.

  Usage: 
    lc hardware [OPTIONS]
    Model format: repo_id/model_id.

  Options:
    --model TEXT  Model name in format: repoID/modelID  [required]
    -h, --help    Show this message and exit.
  • lc exec
Execute an input prompt with given model and given task.

  Usage: 
    lc exec [OPTIONS]

  Options:
    --task TEXT   Specify the task name  [required]
    --model TEXT  Specify the model name (repoID/modelID)  [required]
    --input TEXT  Specify input text (optional)
    -h, --help    Show this message and exit.
  • lc fetch
Fetch the logs of previous sessions.

  Usage:
    lc fetch [OPTIONS]

  Options:
    -h, --help  Show this message and exit.

Predefined tasks

Command

lc list tasks

Output

Available Tasks:

  • NER
  • Summary
  • AnalyseSentiment
  • DetectBias
  • TagTopic
  • Custom

Command examples

  • lc list models
  • lc list tasks
  • lc add --model ceadar-ie/FinanceConnect-13B
  • lc remove --model ceadar-ie/FinanceConnect-13B
  • lc hardware --model ceadar-ie/FinanceConnect-13B
  • lc exec --task NER --model ceadar-ie/FinanceConnect-13B --input "Hi! I'm LLMConnect API"
  • lc fetch

Author

CeADAR Connect Group

License

APACHE 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_connect-1.1.3.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

llm_connect-1.1.3-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file llm_connect-1.1.3.tar.gz.

File metadata

  • Download URL: llm_connect-1.1.3.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for llm_connect-1.1.3.tar.gz
Algorithm Hash digest
SHA256 229c492d347cdf65b6f5412999c3bf5bb5641f535c16617340c21a0f1633a208
MD5 b7748fcce1632f79bb92cdda7a9431b9
BLAKE2b-256 c144be00512e68b33e41f638f2d69e1d86def59546c5d6edabb9a56b90e513e7

See more details on using hashes here.

File details

Details for the file llm_connect-1.1.3-py3-none-any.whl.

File metadata

  • Download URL: llm_connect-1.1.3-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for llm_connect-1.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 239a9fd185ca83828fb37845bb1fad7081f93d4aec4b1a80a57d12d8777313cd
MD5 af1a3efea2215fc41cf66d63762de92b
BLAKE2b-256 ec84083df9fbadd32b1e1ed1ea58b597878ff366a8259e4e57b03dfcaf7348a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page