Skip to main content

A Python package for managing LLM chat conversation history

Project description

LLM Dialog Manager

A Python package for managing AI chat conversation history with support for multiple LLM providers (OpenAI, Anthropic, Google, X.AI) and convenient conversation management features.

Features

  • Support for multiple AI providers:
    • OpenAI (GPT-3.5, GPT-4)
    • Anthropic (Claude)
    • Google (Gemini)
    • X.AI (Grok)
  • Intelligent message role management (system, user, assistant)
  • Conversation history tracking and validation
  • Load balancing across multiple API keys
  • Error handling and retry mechanisms
  • Conversation saving and loading
  • Memory management options
  • Conversation search and indexing
  • Rich conversation display options

Installation

pip install llm-dialog-manager

Quick Start

Basic Usage

from llm_dialog_manager import ChatHistory

# Initialize with a system message
history = ChatHistory("You are a helpful assistant")

# Add messages
history.add_user_message("Hello!")
history.add_assistant_message("Hi there! How can I help you today?")

# Print conversation
print(history)

Using the AI Agent

from llm_dialog_manager import Agent

# Initialize an agent with a specific model
agent = Agent("claude-2.1", memory_enabled=True)

# Add messages and generate responses
agent.add_message("system", "You are a helpful assistant")
agent.add_message("user", "What is the capital of France?")
response = agent.generate_response()

# Save conversation
agent.save_conversation()

Advanced Features

Managing Multiple API Keys

from llm_dialog_manager import Agent

# Use specific API key
agent = Agent("gpt-4", api_key="your-api-key")

# Or use environment variables
# OPENAI_API_KEY_1=key1
# OPENAI_API_KEY_2=key2
# The system will automatically handle load balancing

Conversation Management

from llm_dialog_manager import ChatHistory

history = ChatHistory()

# Add messages with role validation
history.add_message("Hello system", "system")
history.add_message("Hello user", "user")
history.add_message("Hello assistant", "assistant")

# Search conversations
results = history.search_for_keyword("hello")

# Get conversation status
status = history.conversation_status()
history.display_conversation_status()

# Get conversation snippets
snippet = history.get_conversation_snippet(1)
history.display_snippet(1)

Environment Variables

Create a .env file in your project root:

# OpenAI
OPENAI_API_KEY_1=your-key-1
OPENAI_API_BASE_1=https://api.openai.com/v1

# Anthropic
ANTHROPIC_API_KEY_1=your-anthropic-key
ANTHROPIC_API_BASE_1=https://api.anthropic.com

# Google
GEMINI_API_KEY=your-gemini-key

# X.AI
XAI_API_KEY=your-x-key

Development

Running Tests

pytest tests/

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support, please open an issue in the GitHub repository or contact the maintainers.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_dialog_manager-0.1.1178.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

llm_dialog_manager-0.1.1178-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file llm_dialog_manager-0.1.1178.tar.gz.

File metadata

  • Download URL: llm_dialog_manager-0.1.1178.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for llm_dialog_manager-0.1.1178.tar.gz
Algorithm Hash digest
SHA256 171398c1c7cd1a9ffbb10f6c31eb4cc4af11825283c89e29f411f6ddde076779
MD5 1c4fe39d0e14aa72ba32b55fff870b3c
BLAKE2b-256 8e9c37fb9ab587b4d49ef0ecad71160dae6d10293b79f8ff99b45cc1621281dd

See more details on using hashes here.

File details

Details for the file llm_dialog_manager-0.1.1178-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_dialog_manager-0.1.1178-py3-none-any.whl
Algorithm Hash digest
SHA256 d9f16ec01d825e1448729d42431ae0226a3d3325b5bad73472e629cd48c7ce65
MD5 febce75bc44449d8dc1595b12d2f2426
BLAKE2b-256 cce61e41f8eda59df0ebcd5064c573387414d9ce35defeed53688b1a69360987

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page