Skip to main content

A Python package for managing LLM chat conversation history

Project description

LLM Dialog Manager

A Python package for managing AI chat conversation history with support for multiple LLM providers (OpenAI, Anthropic, Google, X.AI) and convenient conversation management features.

Features

  • Support for multiple AI providers:
    • OpenAI (GPT-3.5, GPT-4)
    • Anthropic (Claude)
    • Google (Gemini)
    • X.AI (Grok)
  • Intelligent message role management (system, user, assistant)
  • Conversation history tracking and validation
  • Load balancing across multiple API keys
  • Error handling and retry mechanisms
  • Conversation saving and loading
  • Memory management options
  • Conversation search and indexing
  • Rich conversation display options

Installation

pip install llm-dialog-manager

Quick Start

Basic Usage

from llm_dialog_manager import ChatHistory

# Initialize with a system message
history = ChatHistory("You are a helpful assistant")

# Add messages
history.add_user_message("Hello!")
history.add_assistant_message("Hi there! How can I help you today?")

# Print conversation
print(history)

Using the AI Agent

from llm_dialog_manager import Agent

# Initialize an agent with a specific model
agent = Agent("claude-2.1", memory_enabled=True)

# Add messages and generate responses
agent.add_message("system", "You are a helpful assistant")
agent.add_message("user", "What is the capital of France?")
response = agent.generate_response()

# Save conversation
agent.save_conversation()

Advanced Features

Managing Multiple API Keys

from llm_dialog_manager import Agent

# Use specific API key
agent = Agent("gpt-4", api_key="your-api-key")

# Or use environment variables
# OPENAI_API_KEY_1=key1
# OPENAI_API_KEY_2=key2
# The system will automatically handle load balancing

Conversation Management

from llm_dialog_manager import ChatHistory

history = ChatHistory()

# Add messages with role validation
history.add_message("Hello system", "system")
history.add_message("Hello user", "user")
history.add_message("Hello assistant", "assistant")

# Search conversations
results = history.search_for_keyword("hello")

# Get conversation status
status = history.conversation_status()
history.display_conversation_status()

# Get conversation snippets
snippet = history.get_conversation_snippet(1)
history.display_snippet(1)

Environment Variables

Create a .env file in your project root:

# OpenAI
OPENAI_API_KEY_1=your-key-1
OPENAI_API_BASE_1=https://api.openai.com/v1

# Anthropic
ANTHROPIC_API_KEY_1=your-anthropic-key
ANTHROPIC_API_BASE_1=https://api.anthropic.com

# Google
GEMINI_API_KEY=your-gemini-key

# X.AI
XAI_API_KEY=your-x-key

Development

Running Tests

pytest tests/

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support, please open an issue in the GitHub repository or contact the maintainers.

Project details


Release history Release notifications | RSS feed

This version

0.1.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_dialog_manager-0.1.8.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

llm_dialog_manager-0.1.8-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file llm_dialog_manager-0.1.8.tar.gz.

File metadata

  • Download URL: llm_dialog_manager-0.1.8.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for llm_dialog_manager-0.1.8.tar.gz
Algorithm Hash digest
SHA256 1625de40f8d78790f7f547840d988c9a15b116cbab65f9e4a1c7a790f9ad452e
MD5 e1a58c03dbb59498990a3e4c9e67f352
BLAKE2b-256 751ce086eb69efdfca4e9c541ff02da16094fa9e48adec8ea6b5a272bf6a4908

See more details on using hashes here.

File details

Details for the file llm_dialog_manager-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_dialog_manager-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 f7e85a310bda18285316ef9d2bec563945823bdb934503ba513d4ff4b5d18716
MD5 4e92c91e3d44d1eebaa90540cf6928c2
BLAKE2b-256 c3d5ea25623d8e4197a451cfc465cfc11bbcbc1bb5d696b0a3d12178d8299756

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page