Run embedding models using ONNX
Project description
llm-embed-onnx
Run embedding models using ONNX
This LLM plugin is a wrapper around onnx_embedding_models by Benjamin Anderson.
Installation
Install this plugin in the same environment as LLM.
llm install llm-embed-onnx
Usage
This plugin adds the following embedding models, which can be listed using llm embed-models
:
onnx-bge-micro
onnx-gte-tiny
onnx-minilm-l6
onnx-minilm-l12
onnx-bge-small
onnx-bge-base
onnx-bge-large
You can run any of these models using llm embed
command:
llm embed -m onnx-bge-micro -c "Example content"
This will output a 384 length JSON array of floating point numbers, starting:
[-0.03910085942622519, -0.0030843335461659795, 0.032797761260860724,
The first time you use any of these models the model will be downloaded to the llm_embed_onnx
directory in your LLM data directory. On macOS this defaults to:
~/Library/Application Support/io.datasette.llm/llm_embed_onnx
For more on how to use these embedding models see the LLM embeddings documentation.
Development
To set up this plugin locally, first checkout the code. Then create a new virtual environment:
cd llm-embed-onnx
python3 -m venv venv
source venv/bin/activate
Now install the dependencies and test dependencies:
llm install -e '.[test]'
To run the tests:
pytest
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llm-embed-onnx-0.1.tar.gz
.
File metadata
- Download URL: llm-embed-onnx-0.1.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b0a5ed0876193aad023a63a72a976daf4fb9250471d573c222a46c94cab819c |
|
MD5 | 4f5d51616f16ddaf3971e4dc24c0243c |
|
BLAKE2b-256 | 3d341d5c0f5ed5c34a0ee04468d3e149c827280e97c08013fe48669b5e3ed100 |
File details
Details for the file llm_embed_onnx-0.1-py3-none-any.whl
.
File metadata
- Download URL: llm_embed_onnx-0.1-py3-none-any.whl
- Upload date:
- Size: 7.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 946a9694f046f09965e12d481220dc8a146b0f6bbabe5f37457ebe2b2d4431f0 |
|
MD5 | 8ff993d7018c5df9fd481384f9397ec7 |
|
BLAKE2b-256 | 4346f2c5df1d94e783874aa5db1bfbb80e88893dde198377a4fe501999baeec5 |