Skip to main content

Run embedding models using ONNX

Project description

llm-embed-onnx

PyPI Changelog Tests License

Run embedding models using ONNX

This LLM plugin is a wrapper around onnx_embedding_models by Benjamin Anderson.

Installation

Install this plugin in the same environment as LLM.

llm install llm-embed-onnx

Usage

This plugin adds the following embedding models, which can be listed using llm embed-models:

onnx-bge-micro
onnx-gte-tiny
onnx-minilm-l6
onnx-minilm-l12
onnx-bge-small
onnx-bge-base
onnx-bge-large

You can run any of these models using llm embed command:

llm embed -m onnx-bge-micro -c "Example content"

This will output a 384 length JSON array of floating point numbers, starting:

[-0.03910085942622519, -0.0030843335461659795, 0.032797761260860724,

The first time you use any of these models the model will be downloaded to the llm_embed_onnx directory in your LLM data directory. On macOS this defaults to:

~/Library/Application Support/io.datasette.llm/llm_embed_onnx

For more on how to use these embedding models see the LLM embeddings documentation.

Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment:

cd llm-embed-onnx
python3 -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

llm install -e '.[test]'

To run the tests:

pytest

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm-embed-onnx-0.1.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

llm_embed_onnx-0.1-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file llm-embed-onnx-0.1.tar.gz.

File metadata

  • Download URL: llm-embed-onnx-0.1.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for llm-embed-onnx-0.1.tar.gz
Algorithm Hash digest
SHA256 6b0a5ed0876193aad023a63a72a976daf4fb9250471d573c222a46c94cab819c
MD5 4f5d51616f16ddaf3971e4dc24c0243c
BLAKE2b-256 3d341d5c0f5ed5c34a0ee04468d3e149c827280e97c08013fe48669b5e3ed100

See more details on using hashes here.

File details

Details for the file llm_embed_onnx-0.1-py3-none-any.whl.

File metadata

  • Download URL: llm_embed_onnx-0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for llm_embed_onnx-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 946a9694f046f09965e12d481220dc8a146b0f6bbabe5f37457ebe2b2d4431f0
MD5 8ff993d7018c5df9fd481384f9397ec7
BLAKE2b-256 4346f2c5df1d94e783874aa5db1bfbb80e88893dde198377a4fe501999baeec5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page