Skip to main content

No project description provided

Project description

llm-groq

LLM plugin providing access to Groqcloud models.

Installation

Install this plugin in the same environment as LLM:

llm install llm-groq

Usage

First, obtain an API key for Groqcloud.

Configure the key using the llm keys set groq command:

llm keys set groq
<paste key here>

You can now access the three Mistral hosted models: groq-llama2 and groq-mixtral.

To run a prompt through groq-mixtral:

llm -m groq-mixtral 'A sassy name for a pet sasquatch'

To start an interactive chat session with groq-mixtral:

llm chat -m groq-mixtral
llm chat -m groq-mixtral
Chatting with groq-mixtral
Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> three proud names for a pet walrus
Here are three whimsical and proud-sounding names for a pet walrus:

1. Regalus Maximus
2. Glacierus Royalty
3. Arctican Aristocat

These names evoke a sense of majesty and grandeur, fitting for a noble and intelligent creature like a walrus. I hope you find these names fitting and amusing! If you have any other requests or need assistance with something else, please don't hesitate to ask.

To use a system prompt with groq-mixtral to explain some code:

cat example.py | llm -m groq-mixtral -s 'explain this code'

Model options

TBD

Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment:

cd llm-groq
python3 -m venv venv
source venv/bin/activate

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_groq-0.5.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

llm_groq-0.5-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file llm_groq-0.5.tar.gz.

File metadata

  • Download URL: llm_groq-0.5.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for llm_groq-0.5.tar.gz
Algorithm Hash digest
SHA256 357fd17920665b331ad1d7a6baf82592128e3fc71c0f3d296c9e7ac872a06c9c
MD5 2a643bf65376bc2332ee29f7993ab24f
BLAKE2b-256 d3852b531730ffd7eb876c7597d7d5aadf4a33628cda595ef774aefe646db825

See more details on using hashes here.

File details

Details for the file llm_groq-0.5-py3-none-any.whl.

File metadata

  • Download URL: llm_groq-0.5-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for llm_groq-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 33e2013c76d27b5315b1a603ecdf3bce4e8d6b0ced4577ed1d07ae4758a02931
MD5 733ca189f12517bcf9db79b3b5c58edf
BLAKE2b-256 888c9817229ffaef2316e240881756768d90a092c0a3b0caa92d52c3921b404b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page