No project description provided
Project description
llm-groq
LLM plugin providing access to Groqcloud models.
Installation
Install this plugin in the same environment as LLM:
llm install llm-groq
Usage
First, obtain an API key for Groqcloud.
Configure the key using the llm keys set groq
command:
llm keys set groq
<paste key here>
You can now access the three Mistral hosted models: groq-llama2
and groq-mixtral
.
To run a prompt through groq-mixtral
:
llm -m groq-mixtral 'A sassy name for a pet sasquatch'
To start an interactive chat session with groq-mixtral
:
llm chat -m groq-mixtral
llm chat -m groq-mixtral
Chatting with groq-mixtral
Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> three proud names for a pet walrus
Here are three whimsical and proud-sounding names for a pet walrus:
1. Regalus Maximus
2. Glacierus Royalty
3. Arctican Aristocat
These names evoke a sense of majesty and grandeur, fitting for a noble and intelligent creature like a walrus. I hope you find these names fitting and amusing! If you have any other requests or need assistance with something else, please don't hesitate to ask.
To use a system prompt with groq-mixtral
to explain some code:
cat example.py | llm -m groq-mixtral -s 'explain this code'
Model options
TBD
Development
To set up this plugin locally, first checkout the code. Then create a new virtual environment:
cd llm-groq
python3 -m venv venv
source venv/bin/activate
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llm_groq-0.5.tar.gz
.
File metadata
- Download URL: llm_groq-0.5.tar.gz
- Upload date:
- Size: 7.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 357fd17920665b331ad1d7a6baf82592128e3fc71c0f3d296c9e7ac872a06c9c |
|
MD5 | 2a643bf65376bc2332ee29f7993ab24f |
|
BLAKE2b-256 | d3852b531730ffd7eb876c7597d7d5aadf4a33628cda595ef774aefe646db825 |
File details
Details for the file llm_groq-0.5-py3-none-any.whl
.
File metadata
- Download URL: llm_groq-0.5-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33e2013c76d27b5315b1a603ecdf3bce4e8d6b0ced4577ed1d07ae4758a02931 |
|
MD5 | 733ca189f12517bcf9db79b3b5c58edf |
|
BLAKE2b-256 | 888c9817229ffaef2316e240881756768d90a092c0a3b0caa92d52c3921b404b |