Skip to main content

Transcribe audio using the Groq.com Whisper API

Project description

llm-groq-whisper

PyPI Changelog Tests License

Transcribe audio using the Groq.com Whisper API

Installation

Install this plugin in the same environment as LLM.

llm install llm-groq-whisper

Usage

Run transcripts using:

llm groq-whisper audio.mp3

llm groq-whisper --help

Usage: llm groq-whisper [OPTIONS] AUDIO_FILE

  Run transcriptions or translations using the Groq Whisper API

  Usage:      llm groq-whisper audio.mp3 > output.txt     cat audio.mp3 | llm
  groq-whisper - > output.txt

  Examples:      # Basic transcription     llm groq-whisper audio.mp3

      # Translation to English     llm groq-whisper --translate audio.mp3

      # Transcription with specific model and language     llm groq-whisper
      --model whisper-large-v3 --language fr audio.mp3

      # Detailed JSON output with timestamps     llm groq-whisper --response-
      format verbose_json audio.mp3

Options:
  --key TEXT                      Groq API key to use
  --model [whisper-large-v3-turbo|distil-whisper-large-v3-en|whisper-large-v3]
                                  Whisper model to use
  --response-format [json|verbose_json|text]
                                  Response format
  --language TEXT                 Language code (e.g., 'en' for English). Only
                                  for whisper-large-v3-turbo and whisper-
                                  large-v3
  --temperature FLOAT             Temperature between 0 and 1
  --prompt TEXT                   Optional context or spelling guidance (max 224
                                  tokens)
  --translate                     Use translation endpoint instead of
                                  transcription
  --help                          Show this message and exit.

Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment:

cd llm-groq-whisper
python -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

llm install -e '.[test]'

To run the tests:

python -m pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_groq_whisper-0.1a0.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

llm_groq_whisper-0.1a0-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file llm_groq_whisper-0.1a0.tar.gz.

File metadata

  • Download URL: llm_groq_whisper-0.1a0.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for llm_groq_whisper-0.1a0.tar.gz
Algorithm Hash digest
SHA256 934f0aae45536d39af4a954c15d75804271a27575f26a2b9eb651973364a2842
MD5 095984619cbdd842c6767a0aff8f1021
BLAKE2b-256 c3d3ebbf38e4a31b40af5ad9e7381aeb74dfe7b897b0c227c7add9e5a3b9afc4

See more details on using hashes here.

Provenance

The following attestation bundles were made for llm_groq_whisper-0.1a0.tar.gz:

Publisher: publish.yml on simonw/llm-groq-whisper

Attestations:

File details

Details for the file llm_groq_whisper-0.1a0-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_groq_whisper-0.1a0-py3-none-any.whl
Algorithm Hash digest
SHA256 94073c2be690ace3f63717a3ddb9c5f981afdd00cdabc452593cbd34966da4a4
MD5 aac543e4157462dc9aa629360104e3d2
BLAKE2b-256 50288a20fef1b8d78b6187d5c9a51fee1f7fd0fd5ef45bbb8531a652fefbbeea

See more details on using hashes here.

Provenance

The following attestation bundles were made for llm_groq_whisper-0.1a0-py3-none-any.whl:

Publisher: publish.yml on simonw/llm-groq-whisper

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page