Skip to main content

Это библиотека на Python, предназначенная для упрощения создания и управления моделями генерации с использованием поиска (Retrieval-Augmented Generation, RAG).

Project description

rag_builder

rag_builder — это библиотека на Python, предназначенная для упрощения создания и управления моделями генерации с использованием поиска (Retrieval-Augmented Generation, RAG). Библиотека интегрируется с различными языковыми моделями и предоставляет удобный интерфейс для создания, запроса и управления диалоговыми системами.

Возможности

  • Управление командами: Легко добавляйте и управляйте командами для вашей диалоговой системы.
  • Интеграция с LLM: Используйте различные языковые модели для генерации текста.
  • Интеграция с Vector DB: Используйте различные базы данных векторов для поиска похожих запросов.
  • Интеграция с Vectorizers: Используйте различные инструменты для преобразования текста в векторное представление.

Интеграции

Модели Минимальная интеграция Оптимизированная интеграция Полностью интегрировано
LLMs:
OpenAI models
Yandex models
Gemini models
Vector DB:
Chroma
pgvector
Vectorizers:
OpenAI embeddings
Yandex embeddings

Установка

Для установки rag_builder можно использовать pip:

# Без интеграций
pip install llm-rag-builder

# Все интеграции
pip install "llm-rag-builder[all]"  

# Интеграции по отдельности
pip install "llm-rag-builder[openai]"
pip install "llm-rag-builder[yandex]"
pip install "llm-rag-builder[gemini]"
pip install "llm-rag-builder[chroma]"
pip install "llm-rag-builder[pgvector]"

Использование

Базовая настройка

Пример настройки базовой диалоговой системы с использованием rag_builder:

from rag_builder import BaseDialog, BaseCommand, YandexLLM, GeminiLLM

# Инициализация LLM
llm = GeminiLLM(
    db=vdb,
    vectorizer=vectorizer,
    api_key="YOUR_API_KEY",
    llm_model="gemini-1.5-flash",
)

# Создание экземпляра диалога
dialog = BaseDialog(
    llm=llm,
    title='OpenAI Dialog'
)

# Определение команд
get_time_func = BaseCommand(
    name='get_time',
    description='Получить текущее время.',
    examples=['get_time()'],
    run=lambda args: f"Текущее время 12:00",
)

get_weather_func = BaseCommand(
    name='get_weather',
    description='Получить текущую погоду.',
    examples=['get_weather()'],
    run=lambda args: f"Текущая погода солнечная",
)

# Добавление команд в диалог
dialog.add_command(get_time_func)
dialog.add_command(get_weather_func)

# Обработка сообщения пользователя
dialog.proccess_user_message('Какая погода?')

Вывод:

USER: Какая погода?
ASSISTANT: <RUNFUNC> get_weather() </RUNFUNC>
SYSTEM: Текущая погода солнечная
ASSISTANT: Текущая погода солнечная

Больше примеров использования можно найти в папке examples.

Вклад

Ваши идеи и вклад приветствуются! Пожалуйста, отправляйте запросы на добавление изменений (pull requests) или открывайте issue для обсуждения ваших идей.

Лицензия

Этот проект распространяется под лицензией MIT. Подробности можно найти в файле LICENSE.

Контакты

По любым вопросам и запросам обращайтесь на pzrnqt1vrss@protonmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rag_builder-0.2.0.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

llm_rag_builder-0.2.0-py3-none-any.whl (16.8 kB view details)

Uploaded Python 3

File details

Details for the file llm_rag_builder-0.2.0.tar.gz.

File metadata

  • Download URL: llm_rag_builder-0.2.0.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for llm_rag_builder-0.2.0.tar.gz
Algorithm Hash digest
SHA256 ecdf2cc92d9efc06f2ec715c06794f410bc90b8afb4632ba56716a2e6599e2f7
MD5 2c14d216b93351be550c17809bb3689f
BLAKE2b-256 3125843214cea064a0118fa8a23a78cbbe8fb0034c76afe54d016da8645ecb2c

See more details on using hashes here.

File details

Details for the file llm_rag_builder-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llm_rag_builder-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 88f5d2c1f341429e62c2df99a2172e06b26339a5f505f605e9d06fcbd07e37f8
MD5 00f6ea8eb2dd950f5fa10f04d1b0ca65
BLAKE2b-256 05f3bad20b0e8c58ab2a644c84984b47ae99625df88a186e655e4661a47e66fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page