Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

PyPI PyPI - License Downloads

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU or GPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Integrations:

Installation

Simply install it via pip: pip install llm-rs

Installation with GPU Acceleration Support

llm-rs incorporates support for various GPU-accelerated backends to facilitate enhanced inference times. To enable GPU-acceleration the use_gpu parameter of your SessionConfig must be set to True. The llm documentation lists all model architectures, which are currently accelerated. We distribute prebuilt binaries for the following operating systems and graphics APIs:

MacOS (Using Metal)

For MacOS users, the Metal-supported version of llm-rs can be easily installed via pip:

pip install llm-rs-metal

Windows/Linux (Using CUDA for Nvidia GPUs)

Due to the significant file size, CUDA-supported packages cannot be directly uploaded to pip. To install them, download the appropriate *.whl file from the latest Release and install it using pip as follows:

pip install [wheelname].whl

Windows/Linux (Using OpenCL for All GPUs)

For universal GPU support on Windows and Linux, we offer an OpenCL-supported version. It can be installed via pip:

pip install llm-rs-opencl

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Streaming Text

Text can be yielded from a generator via the stream function:

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
for token in model.stream("The meaning of life is"):
    print(token)

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("rustformers/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

🦜️🔗 LangChain Usage

Utilizing llm-rs-python through langchain requires additional dependencies. You can install these using pip install llm-rs[langchain]. Once installed, you gain access to the RustformersLLM model through the llm_rs.langchain module. This particular model offers features for text generation and embeddings.

Consider the example below, demonstrating a straightforward LLMchain implementation with MPT-Instruct:

from llm_rs.langchain import RustformersLLM
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

template="""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
Answer:"""

prompt = PromptTemplate(input_variables=["instruction"],template=template,)

llm = RustformersLLM(model_path_or_repo_id="rustformers/mpt-7b-ggml",model_file="mpt-7b-instruct-q5_1-ggjt.bin",callbacks=[StreamingStdOutCallbackHandler()])

chain = LLMChain(llm=llm, prompt=prompt)

chain.run("Write a short post congratulating rustformers on their new release of their langchain integration.")

🌾🔱 Haystack Usage

Utilizing llm-rs-python through haystack requires additional dependencies. You can install these using pip install llm-rs[haystack]. Once installed, you gain access to the RustformersInvocationLayer model through the llm_rs.haystack module. This particular model offers features for text generation.

Consider the example below, demonstrating a straightforward Haystack-Pipeline implementation with OpenLLama-3B:

from haystack.nodes import PromptNode, PromptModel
from llm_rs.haystack import RustformersInvocationLayer

model = PromptModel("rustformers/open-llama-ggml",
                    max_length=1024,
                    invocation_layer_class=RustformersInvocationLayer,
                    model_kwargs={"model_file":"open_llama_3b-q5_1-ggjt.bin"})

pn = PromptNode(
    model,
    max_length=1024
)

pn("Write me a short story about a lama riding a crab.",stream=True)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs_metal-0.2.15.tar.gz (57.0 kB view details)

Uploaded Source

Built Distributions

llm_rs_metal-0.2.15-cp38-abi3-macosx_11_0_arm64.whl (4.0 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

llm_rs_metal-0.2.15-cp38-abi3-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8+ macOS 10.9+ x86-64

File details

Details for the file llm_rs_metal-0.2.15.tar.gz.

File metadata

  • Download URL: llm_rs_metal-0.2.15.tar.gz
  • Upload date:
  • Size: 57.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.2.3

File hashes

Hashes for llm_rs_metal-0.2.15.tar.gz
Algorithm Hash digest
SHA256 6e6b8fa79e09a47a1abe37faf5851cd6f5e104e4a157193241945db16153e537
MD5 84e4ff99c53d03d1a572ddc79d5c4967
BLAKE2b-256 57fe65726417c1598cd40e7a81444973337bf4b73fedbee69c3b8806c73b23b6

See more details on using hashes here.

File details

Details for the file llm_rs_metal-0.2.15-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs_metal-0.2.15-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1971614f9b0594e75c0cb3b43d4589f93de17cdc646149f2948364492f36074e
MD5 ff422708b434ae9e9149a008d544c84a
BLAKE2b-256 c7cd70938feeeb557ac8b8e7338a07a0f2b612f676a48ac64e05eefd846278b1

See more details on using hashes here.

File details

Details for the file llm_rs_metal-0.2.15-cp38-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs_metal-0.2.15-cp38-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9e860fa7fa12c50df257ec31065146753a321a51e759cca4c704772fc456a77
MD5 60766bbdc3ca3c4d4e73b294ac320520
BLAKE2b-256 c49a8bf191c112df93a2357a040453e09f4d7e1e982bd3485adb732c00420fa3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page