Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python

Unofficial python bindings for the rust llm library created with PyO3. 🐍❤️🦀

This package allows you to run multiple different Large Language Models (LLMs) like LLama or GPT-NeoX on your CPU.

All supported architectures are listed on the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

The package is type-hinted for easy usage.

A llama model can be run like this:

from llm_rs import Llama

#load the model
model = Llama("path/to/model.bin")

#generate
print(model.generate("The meaning of life is"))

The package also supports callbacks to get each token as it is generated. The callback-function also supports canceling the generation by returning a True value from the pytohn side.

from llm_rs import Llama
import sys
from typing import Optional

#load the model
model = Llama("path/to/model.bin")

#define the callback
def callback(token:str)->Optional[bool]:
    print(token,end="")
    sys.stdout.flush()
    # (return True here to cancel the generation)

#start generation
model.generate("The meaning of life is",callback=callback)

The configuration of the generation is handled by the GenerationConfig class.

from llm_rs import Llama, GenerationConfig

#load the model
model = Llama("path/to/model.bin")

#create a config
config = GenerationConfig(top_p=0.9,seed=1441,max_new_tokens=1024)

#generate
print(model.generate("The meaning of life is",generation_config=config))

To configure model specific settings the SessionConfig class can be used.

from llm_rs import Llama, SessionConfig

#define the session
session_config = SessionConfig(threads=8,context_length=512)

#load the model
model = Llama("path/to/model.bin",session_config=session_config)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.1.0.tar.gz (15.6 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.1.0-cp311-none-win_amd64.whl (341.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.1.0-cp311-none-win32.whl (312.2 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.1.0-cp311-cp311-macosx_11_0_arm64.whl (472.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.1.0-cp311-cp311-macosx_10_7_x86_64.whl (503.6 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.1.0-cp310-none-win_amd64.whl (341.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.1.0-cp310-none-win32.whl (312.2 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.1.0-cp310-cp310-macosx_11_0_arm64.whl (472.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.1.0-cp310-cp310-macosx_10_7_x86_64.whl (503.6 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.1.0-cp39-none-win_amd64.whl (341.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.1.0-cp39-none-win32.whl (312.4 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.1.0-cp38-none-win_amd64.whl (341.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.1.0-cp38-none-win32.whl (312.4 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.1.0-cp37-none-win_amd64.whl (341.6 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.1.0-cp37-none-win32.whl (312.4 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.1.0.tar.gz.

File metadata

  • Download URL: llm_rs-0.1.0.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0.tar.gz
Algorithm Hash digest
SHA256 2a091c6dd1fc51fff51914c64c991841d6d0695654a5543b8bec7d674171c7e8
MD5 0590fdd3d9851dc6a67135e272a9ca9f
BLAKE2b-256 a809b8f1f8910b394acd7f526ad4761ab6e291396c492913da7a1d078b818d05

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f553ca896437fd148fa47b9f7492063f780a8120ddff9f867ae60642644b32f
MD5 05b061e0c72d6d639429179d58e6b14e
BLAKE2b-256 bc2edf45cb2ba8fa6a24fa5417405d8639df7b40f3d8cca62f254b0d6f95b882

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ed3bc2fe55ab50eca170da143be91bf7e8b6d9ede29e869d9ba3d8a506250981
MD5 8bed688da678d5a7d530f1d4636d47d6
BLAKE2b-256 2149bdbd7725026465e3c09278aeb9b08f032190bb997ae43edec8b799dcfba4

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adf2371f7f117d1cd9ecea0e47b9bf545c09e443127bba9724873c70e2af6266
MD5 6a7c116c633b57c295d5129ede8dc353
BLAKE2b-256 a2dd4ed8d6760155efa7ffab9b9418e814fdb0d3d5b2af56a2617680957ab341

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f183f989d2add396a6d906e06e78a179f8c3eaf1717c03c64f324afe84ebec6d
MD5 e524428371cf7b19ab0a728e6d416cfa
BLAKE2b-256 3dab7aafa6a937bf4d2c4699e8562e2440e0e3c6a57d0badc5ccc16ce00c302a

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9aee4c64dcbf83a6507db09b0f64a4d4a80ae069eca26a897d366d285b7f68f8
MD5 df0ebf6d0fb5832cc72a806d8c46bc4f
BLAKE2b-256 b8191c9daa9bde3cf61ec275a63aa722c36dcf1418453b5c9867cd32dc0a7b6c

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c7b6f7cdd662c8b3802d980834af49f8fc2ef492c72ce6159c7f4905329c7fba
MD5 0ed4e46853650443fd82aa23f3ee42aa
BLAKE2b-256 cfa8a5a880ac01c7449de2211a9e773f523fea3c5a8b79605dfcbc73d4899bec

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 341.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 86578938d830bd5838270a0a506ea8fe2829f0fbf5be816a643e7f231469d33a
MD5 1ef017d6612221b6f3a720931afd5b68
BLAKE2b-256 cbf577957de22da9a9577bfabb02601f7d66cb340d5c11465e1a2a34880833d4

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp311-none-win32.whl
  • Upload date:
  • Size: 312.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 0bc6d78067551ea06de67538f603aa6a8bf45d177af4a8f0e5b9c6ab788292c6
MD5 3be59c61de8cd32224e1e6d72387707a
BLAKE2b-256 8e4a09b67f40e9136d559397511d3ba1d7140de066aa2d1f3c71f9a351080c25

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a91d9c61751dc90236bd4b37ddab9d676ea550e17ea901ce741db50e4ebe1c24
MD5 bdae770751338d866c9b009d87d7ba1c
BLAKE2b-256 49894a8874ca3809641ace2af0c1b6a350ff75e117230280f252c2dceb0c3381

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4184e2f674cb51da40ae666bc301d493c764e2df556b88442d49bebe8c0721c
MD5 044f673d06469737e71b6a8bca6708a7
BLAKE2b-256 b96dfa9d2adfe5942df377f7d98062582835f9ffcad12c75ff60efd10a9fa161

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a90fed9fdeeec5710b79fb59290c55b574f99873eec752491372b77dafc42434
MD5 e1a75005fd4265f83db6fb4e3fa1c618
BLAKE2b-256 db2bf36f2d245257a996aaefc9de22e4ed3c5f07f198ffbb91a04f7a76d77058

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 29f0f7f262d93c17659adc0584e77f74750b70d11b96f9387de519de860259fb
MD5 0e8e3da9dcd25d6a61c0811801957b7a
BLAKE2b-256 fa10b94a1454d7a9553727a1e780765152228f7a52a8eb44d8f3231e63dd9dea

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 341.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 01ffb8313c5069d7620911a711fe93009ec2ef9e8e6bd7a06ab2a2370d0a4f99
MD5 9dcc9338eea4368f90114d459bdbad40
BLAKE2b-256 c19c874c56733e2f4f174bca4de34492fed5e5fcddc757cd3bf86dfd0c67eef3

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp310-none-win32.whl
  • Upload date:
  • Size: 312.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 1a59323c6571abc7fe3f73ba5fd8d4a7a8ed8432ff3fdbfd5ecc98fcc23de511
MD5 28172b328616db2bc2fe8b16c549f29b
BLAKE2b-256 f373e919a60d7a55bb51a7915e918bd257fc1583a24b9b8dbb44cba0d11e2a31

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1835b09d1158bb137913daba44ca54894e3a8299a06309b28c899c5034cd915e
MD5 8b78dc2ee1d7fbc8170ef093ef39e4bf
BLAKE2b-256 b1fed4d445ca78068b209b8b71d21a86c37bb462d9313408b803b580a90359d7

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bbd6c06de1bb81300bff3a5769e330f386b8bf5ce2133e025a61bcdeb3e87aa1
MD5 94024714bdd2a70301b54e1121343db9
BLAKE2b-256 884a044a16520073cef9199a5449cdd004d6db402077c8a0488437a8a9ae8f67

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 478fa0f566ec604bd7f52af026412a3b40a55dbdaab15def82b838f3e3802099
MD5 f271812f8220bc91f3e8d040d8a51ea4
BLAKE2b-256 530901e5cb0cd4e38891eb998090bd95005f63e52934ea332337937421e30205

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8fac5db1249a7c04141553ec0f15f08a9762563f4c4181fbabef52bc0e91f7a1
MD5 d155dfd0dfd2ffe4213c553ad41edaca
BLAKE2b-256 0d5a638016d2f200b82ae670d15f76d71eabf566100624d4851a7278dec7e099

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 341.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 766a8b57a13ad023fff64f10af72844be976336737f0bb0069cb6dd1714b1e75
MD5 b04f6340e4713b8e186dfbd7270c7716
BLAKE2b-256 57bfb27fe8ba918e26f1ed99c5e5e7179141e20c2f3439e05ace0c651342a4c0

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp39-none-win32.whl
  • Upload date:
  • Size: 312.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 6615ab699737c62dddfc2818cb77a90e7cd1f552ab25d7df01437160e48e4df7
MD5 11afdc84a3d3f82708e25715185736b2
BLAKE2b-256 f0b97e27417014e0573932b7eddfa55e56c5034642f0080bbf453086316cddba

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbc00965cbd52bee62468ff7a004e1e87be5e21584399f00789242a3ebd51977
MD5 1e9aeff20a6c2ec11957548712a2b091
BLAKE2b-256 c51b3c548f20623bba7d1a98f4f66672c22a36726ef007a73cec128cca3aca2f

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ba0c30309b22f8ff091f04a98b23d735051d1dad52590853e38a6e11def04141
MD5 4010b332550fac32b26a48e27c6789ea
BLAKE2b-256 54399ce7e6fade6d5d05727fa0eef6b9e220135df3836ce3d27cd1bc03359e2c

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 341.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 91e7a6aaac6ef5679b5cc41277db44a7827a337eecb68d87c1a46ce5edfe1bfe
MD5 aedc7f31b055c4996bde981879987d90
BLAKE2b-256 4b1cbd2d1e1198db85c012bb1f81b5af30cb6420019338db9a41c0738463a17f

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp38-none-win32.whl
  • Upload date:
  • Size: 312.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 1960e4cca1a009e4d7b43f02d75396c5099ea15a2a9a94a696494b9578df8b6b
MD5 e1f634bc1871dab8d4d31860b1dffba0
BLAKE2b-256 63b82c231123420ac76e300c402175eca3d8bb1b15dde79631e89b4c8119a039

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95cba4cdd333096406ae336523023a490aecc7b2aaaf358a8f4a87fbb9b21fee
MD5 01fd25da7b123230a75be631a2452682
BLAKE2b-256 475f004729d034f615fe7128820fca336285d11b2278d22c72b0eac62a44c11b

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4d90d85554f36917979c892e49e8874f85c7add8cf91194daca759a5d68381d6
MD5 39aa9c12b4cca8182092f4f461b2eddd
BLAKE2b-256 7ff80302085c6f2af4ee2a8becb701751b479005ad4b18763074e3f8111ae676

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 341.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 0d8ca1e57faf7a2fba1b360896c74a0ede90a9fca5f0d19ad98b8458294c7f23
MD5 1f0bb0f61fd0acdfcaf1e804aad01279
BLAKE2b-256 0040dcf40ede759689043ccf5ad627cd4d1823a09e5e2b2b73bfa1c5544a63fb

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.0-cp37-none-win32.whl
  • Upload date:
  • Size: 312.4 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.17

File hashes

Hashes for llm_rs-0.1.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 ec5d6e460bc7e3a9662d91b5b22742a73928494427b3e96c47f5e5a06e5bbf09
MD5 b9edb66ad046633c372f33c6e12f7512
BLAKE2b-256 475516b69906f8c1ef220e1c05a7f70f53ba82ed7739ab60ed4a7dbaae82a7d1

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06838b752bc9a79348070ab710c6e6e449f0dae00a22eb153dc1522f2c561a1e
MD5 bd12969abfe72ec336fc81f1979f2d74
BLAKE2b-256 29c9a335e10c2eeb5f3c3f85eccc8037488266d9c937826dfcdc4cd020af112e

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 40d8a29ffd3b29cf27e1c6173af40c14ef0fe47b56ea167196af11fc18d88e3e
MD5 7c41377c44bce3018ae76b27f6cb7e8e
BLAKE2b-256 e030de85fc28382aee073592e8a0887c1b4f74a2808b1b474986a7c64326f84b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page