Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python

Unofficial python bindings for the rust llm library created with PyO3. 🐍❤️🦀

This package allows you to run multiple different Large Language Models (LLMs) like LLama or GPT-NeoX on your CPU.

All supported architectures are listed on the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

The package is type-hinted for easy usage.

A llama model can be run like this:

from llm_rs import Llama

#load the model
model = Llama("path/to/model.bin")

#generate
print(model.generate("The meaning of life is"))

The package also supports callbacks to get each token as it is generated. The callback-function also supports canceling the generation by returning a True value from the python side.

from llm_rs import Llama
import sys
from typing import Optional

#load the model
model = Llama("path/to/model.bin")

#define the callback
def callback(token:str)->Optional[bool]:
    print(token,end="")
    sys.stdout.flush()
    # (return True here to cancel the generation)

#start generation
model.generate("The meaning of life is",callback=callback)

The configuration of the generation is handled by the GenerationConfig class.

from llm_rs import Llama, GenerationConfig

#load the model
model = Llama("path/to/model.bin")

#create a config
config = GenerationConfig(top_p=0.9,seed=1441,max_new_tokens=1024)

#generate
print(model.generate("The meaning of life is",generation_config=config))

To configure model specific settings the SessionConfig class can be used.

from llm_rs import Llama, SessionConfig

#define the session
session_config = SessionConfig(threads=8,context_length=512)

#load the model
model = Llama("path/to/model.bin",session_config=session_config)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.1.1.tar.gz (16.2 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.1.1-cp311-none-win_amd64.whl (349.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.1.1-cp311-none-win32.whl (317.8 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.1.1-cp311-cp311-macosx_11_0_arm64.whl (483.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.1.1-cp311-cp311-macosx_10_7_x86_64.whl (515.2 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.1.1-cp310-none-win_amd64.whl (349.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.1.1-cp310-none-win32.whl (317.8 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.1.1-cp310-cp310-macosx_11_0_arm64.whl (483.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.1.1-cp310-cp310-macosx_10_7_x86_64.whl (515.2 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.1.1-cp39-none-win_amd64.whl (350.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.1.1-cp39-none-win32.whl (318.0 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.1.1-cp38-none-win_amd64.whl (349.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.1.1-cp38-none-win32.whl (317.9 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.1.1-cp37-none-win_amd64.whl (349.9 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.1.1-cp37-none-win32.whl (317.9 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.1.1.tar.gz.

File metadata

  • Download URL: llm_rs-0.1.1.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1.tar.gz
Algorithm Hash digest
SHA256 3ca496c7a67f622ff030c3c92fc9362e39eb671af51ceecf89c126bd515a73b6
MD5 e51c4a37a4d753f664e8c2af26a2e8e3
BLAKE2b-256 19df8b955bdb746c7670b592020b9236d136d97188d57638519678c6ba9d3b85

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cf87820e31c2b6091ac9a187bb6a6f4ae8cfe31d309053aca118ab4dfa48904
MD5 b72b41876e7dcef8d3682ce62c7d1bb4
BLAKE2b-256 0d6b3c696348fe269937ce1d3eb095ea28f8e8a4d83bbdba56b28c13aadcab34

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b91eadaaa15bd13a93c9af4d58b8182ff97464cc59f7812f49bf427e444d1679
MD5 ac7afb87c38c2828314b9c2cf1482d1c
BLAKE2b-256 fb2d483e2bdc7c685760131cf3681740629d7ba1d2bb8abc74c0c24942a1e799

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81d5e1ecd25b457c515290918757c2bb6ec54d61cf7367725432e7b12d9cd198
MD5 2d81b632fba4deaffb3af155b99264fa
BLAKE2b-256 127fa12228199c345153505c47342babc7308905a3251b5876057c00b7c61214

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e9fa6cdd3fa319f1ff237128d463735ab5ec67051b449215f397fe8d76b7faca
MD5 f6e221c1763162f5f93ac0bb3e2a7a55
BLAKE2b-256 c1d9483fd31b8e8ca14f0a5728ed1c0109c6019ebb17e19bbc7296f436030378

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c8e5bad85e3ff884fbee14f08416461a7da571b31d093dbd74ed62fe659b778
MD5 4180a52c0ed6cd8fe516673113612431
BLAKE2b-256 742c4f1a88e081cfc761ca0a851a6ae9758e58f8ded967c8b33085610f43aafd

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4cd3c5dacfbd134533115a71b40c4dc4d863890ecd4d5dfae5f5ceba843ec2a1
MD5 64482ab474254f66a3dfc6f2295067b0
BLAKE2b-256 df576fdaaa9381f7ef44a00662b6228b878b03e59a5eb50bff3a3ea2958772e5

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 349.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 72579f61f29a5a7bf8cd399319d532d278fd62fd73d8d8ea8bb2e9f248c12d51
MD5 1ae57842d51d01ca8fc03c82101b68e9
BLAKE2b-256 2404d6fbbdb9b01349865db9f843d7a023deb0637112c4c809fa89197e8426b1

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp311-none-win32.whl
  • Upload date:
  • Size: 317.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 2aec66648f378be186429fed3ef9ba31c9749c1171bc8a0b560ad2ccb045de68
MD5 fe22ab9531ac26d17123aee2a7e4c4bc
BLAKE2b-256 e2d2403fc47d5113a3b512723e00bac7b054e246993c524b2ffbed31629eaf03

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4da6628acbb38d225e4e1fee400cb3c6b1d71b1f4f2deb9d39c5b68ae08fb6ac
MD5 fac37c5ade8be81468d37ca218362611
BLAKE2b-256 235cd8e25c884dbe0f64bca12d860dc7a1c05bbf240200ad5e3b9d742c09eaf0

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0fb489fceea933172e40b637ce8bc55d1c909c46bd7aa59d3e1017db539b2541
MD5 395d849a62641fe7b458491626a442a1
BLAKE2b-256 a5f964a20e2105ede8dd1dbd3877b82f18aff1e068fbb249a95aee25c782dab9

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca8886c34bba6bf8144c7a08c8b6a6ebaf6a35e90ba1635919872b176dc9c03b
MD5 769ea8f212c18916786b7b432e64729c
BLAKE2b-256 c9f2e285417a3f1820c7fa7b41759933f0a4cdc16f207d469db051688ef34044

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3d6adfe410c2c360df69dd381dca9ad5880295a442e40df1d18c681cbd148b8b
MD5 cd5871d9b0e233ccf3ed24dc9922fe12
BLAKE2b-256 c16f34a13ea2b703fb04a7f19c92f8774cda6ad26bb69cd18e5964c10d82a18f

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 349.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bc21dc52599cd478ada21cfe8f45b47f5200918d982a37c7e7b11eaaafb04c8b
MD5 445df4493d469d529d06a5d72df33f4d
BLAKE2b-256 ba21c2b8a5d82247218a8976e075f695259e6171912015982bcad91ef612737f

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp310-none-win32.whl
  • Upload date:
  • Size: 317.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 f3598b24e2adf55ad1183e2cfef0a198f3f71881a8cb92143d73c6fd0772ff8b
MD5 c2941a8cff8b6919066d81bb6f2e7f45
BLAKE2b-256 620b9a08ee8e0f5f4df9b994d3ab555d87eadb3b8c520fe2bdb5d0e1d32bfcbb

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0dc5f753e2b3a2fc410d3f6be6524270c92b8a019170d091ca5a46b3acf6465
MD5 d20d2edac26e1c44e059ec04344edeb1
BLAKE2b-256 60c669bc34a358882eacd85901bc2cf9d09b7d36c6c75b497bb87b1800687f8d

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3c6cba6b1ab92dbc915a10f8319916a4328770e8add427833cdbb13937161efc
MD5 43f9701ecfa439030c639c94ee0d9c08
BLAKE2b-256 e504537862021f321e935fb05b06e1cfca7224339f3862ca9bf706efa01bbbe3

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1f73eae7175c69f5e616d640c2b0ab8e350ba0e43fac5b913dbd30b50f5743c
MD5 99edd744fb9c73dfa4fb8abad0f3810c
BLAKE2b-256 bbf83e57c839568ff5ef138e5d9da323655c08649447c06453a8b64c464b681b

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f06f17221e566888968020f6a67d0fcae9e26fab466370352f01833946966c7b
MD5 bc051f8cd47d446c02c91f6b1e777466
BLAKE2b-256 5475ab1e92ed88413d31c7e0f17032711ac983e9bfb34a2273e486f972c6d1ae

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 350.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ef0b21bed6829acdde52162fe1b6fe2cb99c056586c8cec1bab26a28e6c2b0db
MD5 6d3bc56d6e49fb4a5fcab7d1f8a5ac3f
BLAKE2b-256 c81b39431c1056b87a86166511204fa402d4c625ef3dd71ae20436d1fd3b228b

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp39-none-win32.whl
  • Upload date:
  • Size: 318.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 f3fd7ce58ffd92405971fe5983ff91b31dd2c5d7d9ac5dfbe76a295e93c642d3
MD5 55837bf4a10acec1a10dd683fe5f980e
BLAKE2b-256 65c5a9639af798829c8e28af216f6f09c3b3dcf1903e948fc308c2417b7e25bb

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a9b2b5df4d5f4474f66db12a5a97e3b0bd9e29816315e23e5d05430fa8241c2
MD5 471d0b036f20dc9a1a2fa26e4e09ca12
BLAKE2b-256 4b55351f8e33d84a0607319396d2a237cb7013e2425c63a5b71fed13c8526d4f

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 671e10f92e963e1a84d2d70ac96e5cd392823ee4f9d4a243b00a4e6f60a0601c
MD5 b78e507f9a81944312188d16919c45b8
BLAKE2b-256 4f4243c5629abc43f0be720ec6a2b074c82ab309174c5e123c5c1688615e516a

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 349.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 486e652fe230bdb991308e8aebd36107701e5fe793adc466ddf8864289453057
MD5 baa6b4f97b011d6927bb6a77f853788d
BLAKE2b-256 a91ff9cc0a5a71069bf9f4a81328d6f466529508eb879377a8934d2edc9dfbe4

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp38-none-win32.whl
  • Upload date:
  • Size: 317.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 2f0713ff037cd6be11d0cea5ad47fbaf498c675bff0c24c4e05a25e986991c1d
MD5 251198911fc78f44f1c3e0ec3f083511
BLAKE2b-256 920be68aadbb9834d3687e3cdb175b579ef31c8e9bd13d3b974e2b8633186327

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d70059ffea4b24ecc5ec8bc9ebd384a241541f8bc3863e248415936aabf0822d
MD5 80767311d9b825a23ab2469cee595f5e
BLAKE2b-256 6d6265965dbbff57ceeeee9e3042dfe7b006a9007ef6c99aa428eaa367083214

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5b0684036010dd82083d18d471886977cb3d19cff8c846ea8df50de3d61cf3f7
MD5 a8b68c9936cb98199b0a30eb0fd972f1
BLAKE2b-256 941fa01bf342ec73345c2fb95e18c31aa0ad99be1af50c0185ae7efb3eb535d7

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 349.9 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 34dab56ac2558a80524af0cdbffac49dea036c969c9e84c936c38e94c19586fd
MD5 dfc37d2e021c56a1328f5a217bcbeb60
BLAKE2b-256 1a847c6dbc0e180ba09929f37f9b0a814648699ce61cddc28520caf213afe9fa

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.1.1-cp37-none-win32.whl
  • Upload date:
  • Size: 317.9 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.15.1

File hashes

Hashes for llm_rs-0.1.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 7d0888731bccdfe8704e11fcdd148affd950dc80b0f7e290f25352a7ec0b2bc5
MD5 a154c2f8b8f5ba970813e7392b24032d
BLAKE2b-256 a04b21a9d3e594a901beaa3171bb913e70514d877d84e7190cb1288d1350a949

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d83bf6588acbae695bd3019bd137bdf323a68e4b4ee1f7f0e0d6488db357fa5a
MD5 fcb095b9edd23530e5230105bb6c1bed
BLAKE2b-256 f524029a90f02c766ed0dbf5ea3e4ebac0809fba0d879638d57a4be813ec9284

See more details on using hashes here.

File details

Details for the file llm_rs-0.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 08a4275b6b8bcc8bc8503cae408cf6ada16e26f03006a69f891af1d5e5fd40a7
MD5 ea521f79d37c059e0fe8beaacc40fffc
BLAKE2b-256 a8883272b9df3e8ebaeb9ffd864bd4e1b21183c96649784f15f7db7a05b53faf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page