Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("LLukas22/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.4.tar.gz (31.3 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

llm_rs-0.2.4-cp311-none-win_amd64.whl (452.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.4-cp311-none-win32.whl (407.1 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.4-cp311-cp311-macosx_11_0_arm64.whl (595.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.4-cp311-cp311-macosx_10_7_x86_64.whl (633.2 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.4-cp310-none-win_amd64.whl (452.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.4-cp310-none-win32.whl (407.1 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.4-cp310-cp310-macosx_11_0_arm64.whl (595.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.4-cp310-cp310-macosx_10_7_x86_64.whl (633.2 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.4-cp39-none-win_amd64.whl (452.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.4-cp39-none-win32.whl (407.2 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.4-cp38-none-win_amd64.whl (452.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.4-cp38-none-win32.whl (407.1 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.4-cp37-none-win_amd64.whl (452.5 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.4-cp37-none-win32.whl (407.2 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.4.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.4.tar.gz
  • Upload date:
  • Size: 31.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4.tar.gz
Algorithm Hash digest
SHA256 ca169241a71a12d362336b3c38c4c02e2c69bb063c12eedc32b39888fc4b50aa
MD5 2949a1827b509754eadaa7816e36b0ca
BLAKE2b-256 3b1116c9740e4e9b9fea84170128b63ad4cf47d37c84cf74c7f379a5e2c93020

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be86134d2ee04b77fc752caab9a09bd2bc70720067fc56620a61801d31d603ab
MD5 6b2fa47934d82eb942799b873e79e6f7
BLAKE2b-256 c3fe6d08fee96c7b69ebeb70085b575396fa07eb3aae9edbd662b42f909117c9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5d902fce22716d8a52fdc673b70bbab1b6df5ad9eac2740f8c1ace0b3f554448
MD5 66b947a223b89763e6d66179a572b149
BLAKE2b-256 c5198e8523f2dad5e1344c592db6ea1f812b676ed753c25e8b2bfab577591524

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a6e9e40ea19828cf245e66dfb0d4d2ef5153962dd1077467f375748012567c8
MD5 8bc63505a499453cc8a4f109d355a84a
BLAKE2b-256 19ceb78e5db93c9a0c9cad3964a0d193584ad6d3a8554ba775fe91927f05e3e5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0fa631e565680886be448a5e00f029aa501667e6819b31e198546aac665b22d7
MD5 ff15f28fd77ec793ec96111eae3e6599
BLAKE2b-256 91758b7f0b7772f51a26771f76423a46285260fba25c09bcaad877892ce318be

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db260bd025db0ca807c3d8e26ae4c175e21ec71588416ce709fc6c1c66d962a2
MD5 b092d3e56f84ae807d3960a3bf3770f3
BLAKE2b-256 33336176b667a179f8a8cfb642dfcc78f804954afbf48d90e8baf818c350c688

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 603e61650b0b19fc51bdc5abee403d181c0bdcc3bd34fa92e61c0d1afde3e298
MD5 642026897a1bdfbe74e07cf841f2ab3f
BLAKE2b-256 192357f716eb999a12b6f75be339f1ddd3d71bf43141e4c0cdc5567b63fc3623

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 243b981f95d84f10e33908d4d835755c6ec398629322e757dc26e70b94cd1a92
MD5 00bdf423cf9d233290547fa6522200dc
BLAKE2b-256 56c7d6eee1077f09aa61212eadc6086acb81d0e645fcc868d737dc6b29fc20c8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d8b87aac90976c2a8c0912cad6c1a7822d9f88f73af61241a807953d74a1a3da
MD5 5e36b0956b1b172476c3cfc4c74e1e60
BLAKE2b-256 b253adb170ff9c9c47b4b6b3b1eae176f4e345f2f0641b813b30e204d02112bc

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 452.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 c438612e91f682e1eb438fbe5c6f1228c19422e20890190f0ca1b8636735c2c7
MD5 5862684f41b60c33b347d123570dc669
BLAKE2b-256 2101b1e1447fe0ed28c4ca94768141d045404f987cb47a49d7e00d7223212163

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp311-none-win32.whl
  • Upload date:
  • Size: 407.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp311-none-win32.whl
Algorithm Hash digest
SHA256 d836bac012f7a0308f55e5c6b1ee001100e92ed55d031bb9694e7a4552f66e1f
MD5 f4925fb5a8c54c3e559e3dd0d8a5ece2
BLAKE2b-256 cedae3035613f68ab9c8d8141a071e732773a08ea58c8b29588f897a9deb2359

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 068b0441fe39e0e4d43fea21ea2aaf4218b92f35170cc8ba66fe92d34534c309
MD5 7395fe40281f94d5707223d5dc8013cd
BLAKE2b-256 e7fcbfe648e7ba0cd72df3faa128cc9e2ce5051394ed2bbd30af384c1676e698

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f776033951964426d355426e483e3d3049e8feada3808ce229f9a44d2c46f9c6
MD5 df52a3b933ba07ad92e46f31e9512240
BLAKE2b-256 b009c7d01979d061c31ee4c49ca8901b206fb445b00fb10a7cce8792877d64a9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf948d901f5a5881776c6fd6431c77bbd56c53d14266385369b3599fe44b6598
MD5 d155e7daf8e5dc989f307ba9bd8bae9f
BLAKE2b-256 293a8e257caaa38a325af156e77f44286dc8f29eb09401d9a4f307a091f41246

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 40d72c80c3c9665a98172db90dd1602c176b4146fe1404b86f2c7015f7a941f0
MD5 62c79b692dd04858a1c62a693362a046
BLAKE2b-256 275486868d2459902316846b04394b9a87e4bb705c8fb59b8eb12f253e377aca

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 452.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 efe7736cf738469412d2eed3c1e68c0160bfe50236c8fcf4aae7b8a3a222dead
MD5 ac12548ad7cf38683988a9fcdf4ce7f7
BLAKE2b-256 5e7b236775336b280c7222cde15782d7f7d34d2de3087fd81e0ed7f95f7de10d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp310-none-win32.whl
  • Upload date:
  • Size: 407.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp310-none-win32.whl
Algorithm Hash digest
SHA256 e218f0545b4bcd272cc3f55622ca962480b0fe1d5849a5eec8a58c62d27d1f42
MD5 8b3c514003e0a4fdd99fd17445bf57b0
BLAKE2b-256 8eaa03299ae7e3f67c3bf6a1d63fe0e12cd24fb46e51475e63e087791680928d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7ac4dbf616052573a34f1c0cae93582dffb27e20e5045f017b22e01a1539414
MD5 fdb910f58e9f3f706a61087f565d77f8
BLAKE2b-256 17678ba7e173d4e92665d3d078b591e3a3665a0fe25eefdba1edf13b40f90b36

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7f79a995cbe7e2f42affaad4058d0a68d2895d0e0a082093a9789f35f723847b
MD5 004d62ac6f0d7478d52bea8fe9976927
BLAKE2b-256 2768fca042ff0e8d2a3f4c43b015dd1893201e008a73ecc4c34e2177d0346ca4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8024a236778796cad1d06dc3ccf9c3d9bcde8b4dd2de787aba43aea3283c8b0
MD5 5f783c5b9a063ec12cfabf5a50d79c68
BLAKE2b-256 959d980a7f4ad81c693e4c2bc034400441b146d7aa24e7afd7502e329e3627d9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b0cc59ad3c8fd8d1d0692601b86541e52d5283fbbc9d698c04708055af391a8e
MD5 ed59f8688f70b5475ad5247e1bebd0f8
BLAKE2b-256 2fbbb5df6bbd91e491b5bef32d7fdb399f9aedb09cdcb3b22d163fe9c3675910

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 452.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 4fcd847f9f3e11f82e673e35aefcb5fd2bbf10f05b96491afebecf2710ab2e66
MD5 dd27113e8180c5e56452089ea636a5f4
BLAKE2b-256 af39908ccf2f3c479a07131df7ac3aa8448d381aa2343360e65082cb516aab48

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp39-none-win32.whl
  • Upload date:
  • Size: 407.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp39-none-win32.whl
Algorithm Hash digest
SHA256 74c8e32cd8b50562da3085781761b3c013d3fe8be80e5afe5177ed345ff71dac
MD5 ef0546a9e26a1af1a37c920fcb4d2dcb
BLAKE2b-256 dafd2f8375a361a754a249ee23aa566880cc5abb8990defa06b3462c80d84092

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d31e0318c682cf2673fae998f54aedb101b9de55c9f1738a22d986b67915a43
MD5 a3e4e037a53f391fe4233f9d9c7ef7e8
BLAKE2b-256 a69b3638143b160b51bae1fcfc5eecbd5647347ee6fdbf5756878e7de18743c5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 58d71eb4a682f257ea8e20d189c8981fa682d02a7359651177c3ab1324510685
MD5 e58e6c72b5e59c93e43ae119f2aa6109
BLAKE2b-256 a10c7cc7ded910ef179afdfef21d65f97377d3948d881a4e08a93eab25f26b40

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 452.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2265ce7f00c8a29f4c518fe71cf8462b1e3db0dcae69aab073d97d5109b503bd
MD5 04abf39cfce63a8c5d18bec6862ba133
BLAKE2b-256 8b93d375a0aa7c40f9048317d41885fd896bdecea022c5cf100e14325395e7ad

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp38-none-win32.whl
  • Upload date:
  • Size: 407.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp38-none-win32.whl
Algorithm Hash digest
SHA256 2f7c429af8945cb00449be93f4ce3d36f7713ab161dd6342ac18423bc95cc35b
MD5 db01c979a9eecd915a577ef22420558a
BLAKE2b-256 d72b6ae811b3313b48baf32ad94b65d602d2ee32e51066c44bee4d51fa4ef563

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfa33a5fe7d6607a54c3bd588b18e6840b0539cf1deeded03689611d63e5cec0
MD5 422ba37687651c44a0ea7c0c2788b9f3
BLAKE2b-256 d0bfdf9e0e065f7a409b81b27bed2e9b8f973d756072b7336ebfc107ac1ddf93

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 244ce225a2df5a94aad5fce57761096cf171559845ead2afea86d0dcaa821272
MD5 000d3dd43972056d532531e49d86b1a6
BLAKE2b-256 8456e866dda4ffee899660db6b44ad1b65dfa5b955b1226cf4760f9e4b860b13

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 452.5 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 cdaa772497f77624f14ac0472b0201c982e249d415d60852a71bfc01dbe8af60
MD5 0cd27ae740b427d3a0bcd7309af6bb97
BLAKE2b-256 42454a27ddf1e325aabd9d93c5e7030b093fb59475ffcfeebf9c8dc40dba0ce4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.4-cp37-none-win32.whl
  • Upload date:
  • Size: 407.2 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.4-cp37-none-win32.whl
Algorithm Hash digest
SHA256 c69a053c721b93c4d1c70b8643ca64eb5c5f6132f7099b42c29ee35a525a12e0
MD5 c97fbb4f9655544df8e5f11768027953
BLAKE2b-256 7fcb6e216b1ec5b2a79f30577eac5aaa36a3219082bb603e15765afd634cbe4f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66326d2a105cdca5a204ab8e45727e23f3fdf3e9b40378c3911fb5bd03b4db87
MD5 f9149b0d484cd708f52fbd8fe2ff3857
BLAKE2b-256 fe5ed6ed8257d7148dec23c784c11c1a28c64e2db7f64ef858af18108756e406

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8b9123171986c569ea915df5afdcabe25d36b8988d1310ad565c2bb717f8f880
MD5 2fa0f985e16fd97da19f57a5baf5f4dc
BLAKE2b-256 2c62f9ae099fac34d51440f6673ec3d248cebbb8df141c4afde9b32a148d0476

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page