Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("LLukas22/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.5.tar.gz (31.3 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

llm_rs-0.2.5-cp311-none-win_amd64.whl (450.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.5-cp311-none-win32.whl (405.5 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.5-cp311-cp311-macosx_11_0_arm64.whl (595.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.5-cp311-cp311-macosx_10_7_x86_64.whl (633.5 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.5-cp310-none-win_amd64.whl (450.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.5-cp310-none-win32.whl (405.4 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.5-cp310-cp310-macosx_11_0_arm64.whl (595.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.5-cp310-cp310-macosx_10_7_x86_64.whl (633.5 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.5-cp39-none-win_amd64.whl (450.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.5-cp39-none-win32.whl (405.6 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.5-cp38-none-win_amd64.whl (450.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.5-cp38-none-win32.whl (405.5 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.5-cp37-none-win_amd64.whl (450.3 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.5-cp37-none-win32.whl (405.5 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.5.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.5.tar.gz
  • Upload date:
  • Size: 31.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5.tar.gz
Algorithm Hash digest
SHA256 734496c4e860c72c5cb4aacc0c8124524f758de4d6d724c3afa3674a32622662
MD5 636cd0dbdb4032e852be921d173ed161
BLAKE2b-256 ee6daa708cc07c42646183850a2ef8462a5ec1a603dc297d8c4c6349e0104124

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 153be9be5bd8ddf23bfa53b241a086d77972a688eb4a8ca4f377cf60a6b51dfd
MD5 34062b6c1f4213f5b800a3f7bb1069b3
BLAKE2b-256 8652e6893d269e510ba0488f9cc2a2dbdd2e6aea17bece307563143e8218f751

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 786618ba20674891a83b83d27d883b6360c93d15c4ae4a28265789748b90cca8
MD5 991463c8bb5085accff06747c9fcf5e0
BLAKE2b-256 1330ce01334c1745076219fe8c03f33914a9eef10e9da376a42088acfaeda927

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fa0124185c2b694dd7cceb3439328291e5939478f9f712242412732a822d6aa
MD5 013714b5081af751ff8f86c4785d018a
BLAKE2b-256 25b7ff83727900701bce54728149b986169590c8dcbe90984e781e669b652a44

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fea54bb26ffdd50aa292fcecec633507716465de5c35835d05f7444a05ed4916
MD5 0a9ed66bb88a004aabe183cdcab2b3c6
BLAKE2b-256 a59fd4f10c8e42ecc5049848e7d39dd70d1bd4397138fdd1d6cd571185955f31

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 723433e4ea6a1c6b3786bd0e933e13124fd42937d8f8a987da1ef2c860863864
MD5 eeac01fb8a8a3c79e4a77bfb872ff93b
BLAKE2b-256 67fd7d9ba706c7d49c0f58d59835f45abe4d91744142e63ebfcb6106962e292e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0ce998e63875d1449ad3355efa1b373b832a067ad562699b7cea995ae47785cf
MD5 c85b0647f0f772fb3ae043cd5ac73431
BLAKE2b-256 5300fa54d6b31454eed45c6824d366ba585397d1005fe3bdeeaebc7354e9662e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7e9e0befbd05f075112e57f2b1a43151f18442b82a5fb51d3d4d2be9dc59e0a
MD5 f9e5aa193d609682b81c672210e04909
BLAKE2b-256 fc45be64da38d6bffdc335f218b3145d19a4582779c9e3335664b6b862987191

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2a986634b57c21d478cf7519fc96a4581598c6e4ab78a306144b0fb452fba687
MD5 1a4fd7fdbc7d5c407ce5aa76fff8a712
BLAKE2b-256 41b6571874ede83ce6accea6ad979fd6bcc2d15e3911d6f273bfcf8347491c97

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 450.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 28216f5a7b48c5f3ac50112da339d5af4efdd3b44cfadb2ef17c59ff4ca3d7e0
MD5 a0435291543df65b91d39da9b8acf887
BLAKE2b-256 d4204e3f39f119e5feb27c3c1e6a7c92592b4e65ebbedc0889ce059d37c04596

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp311-none-win32.whl
  • Upload date:
  • Size: 405.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp311-none-win32.whl
Algorithm Hash digest
SHA256 9bb6041a9ac2b101e7485b6b4a2c4790dfb983e0d42b31cb4876d68d187fd69e
MD5 86d92d0b6c9892e24dbfd6e629452101
BLAKE2b-256 db0e6fa9979b64b03eda10831a427e0d143537ef57bed1676cb7dae556c2d2b0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4b4276973e84385f09051c67ecc3b979db6a5293e6124878146ea5dfeaf6834
MD5 9f42c52022dcf409be624ecdc1450c41
BLAKE2b-256 27083d36ea695122465a5a4bb1361a7701c7265930db455dbf7f2576231a4078

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f40b6ad7386c6cebc45a5bfcf64df7728b371d264ee75db6644832680714e8c1
MD5 b7b030d2d896f9a64444965c25e63f9a
BLAKE2b-256 22734b6d01d7534a1c7426f8cc07812681e18983cc38db71b657b3b6c797c06f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbfcd3a2eae759f4037c621128bc0784dbf3e35de1ac0dac33eda886152a30bd
MD5 3f20f66cc6588ce661bdd7b6cef0b502
BLAKE2b-256 61ae28833bfdda753ec1358a116046bcf5f7be737ae5c5a61170986577044369

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4ef01ad17d463d2aca3b7d0577a52cafd0801195c0269c4173138dfac06ef9b9
MD5 99451ea23dcf2421d20021add45f0773
BLAKE2b-256 afe74cde59c49270fd52d9fb6786290f3e6ee3fe4b2ee90e88c1f98c2dd67228

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 450.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bb1eb6ffb00f011e0d07c16b83f063d8aff01b23e478501e32b9529361ae7809
MD5 69c4d5782103c6dc6c9f204a13a00bb7
BLAKE2b-256 b197f3248a73b0558f68a9c4b19c832b2fd3d8fc60c6923f75860b5876c0e8b2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp310-none-win32.whl
  • Upload date:
  • Size: 405.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp310-none-win32.whl
Algorithm Hash digest
SHA256 ed31b490fd6372d4b35e1200d5691115d1e13125d5da6a624d246acc76c242a5
MD5 fc5b8afc4e6bf68093bdf59a6ea5c72f
BLAKE2b-256 bf8b89bbd63f7187deab8cd42efa5198c53a5607db12afcdcb31421ac5ada6a9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb216fc2a4238c3f7af2e9491aade18f6237d968c5c1c7fefb27532e01e08c50
MD5 534a3895f22cbdbada8e2d7893e00c4f
BLAKE2b-256 e9e1c2c9664af73d91293a4bd2a09a7d2c9fe4b758cdb2432ecb87bb7f19d2e9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c785d860224046f58497f84505d8cdcc04c9a9d707e0820866b1c7f08a42e42f
MD5 08b60679fed982a6e1f71230004fb778
BLAKE2b-256 4635da526025f780a60489cc99df148dd7cc7cca54c3871d6e3a0b6ebdccc4fc

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8bbd7925a6199908b1a9d8c44d5c8ad9940aa385d5b8583cae5a581c237b2362
MD5 d1bb4f91deed303e2b024b034741a671
BLAKE2b-256 4ad9faedfa59724c3f63f52c2c62d25dcd55f17141204feb84fb68ebb9daa787

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7bad57979016ef18a0df24c9eda3f9b1ee961348cfd182c12136f2a3d80a3b60
MD5 1ce3a761d6d543f7b864075b51043eb3
BLAKE2b-256 bbb40bb3643039498287ab34c7dfd730021716355a5494887d32de49831ab0a2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 450.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 007cb2d7281e8fd352ac4132cb3c45ea6a539b6d8cd7db056bcc0860008b6286
MD5 625bf136c873cf7fc07517ecdb58c338
BLAKE2b-256 08129d5169d765272b60a3e4f8f13c7f8b10c5a07e70a1374e7fe204dc1c1e5f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp39-none-win32.whl
  • Upload date:
  • Size: 405.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp39-none-win32.whl
Algorithm Hash digest
SHA256 39c9978ecaab2690489efc81a31aa44d2c5e893ab60bba209a0a33291ec32a0c
MD5 917695bb96bab2fafd39d7cb5f9d2f13
BLAKE2b-256 b8a3f473e8ecb156ac943942f4d11817e252b3b7fbc360daf76d343518ebf1b4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d802a8cc06c79ea5747b27cfc8ac71d76398de65f4c7539544fb223143abfe16
MD5 2cd8d08642f99c68a217c3d37d608a8f
BLAKE2b-256 c8b018fb52d4dca6fbd9f7aa276c7cf0ed22871eab5da99a6303cba13ece86e2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b8fbb6c73394bea99fea8b1832c5ee41cb75498e27d6a82000c71b6ae8b33073
MD5 a23e904552eca8d3e5cfd04a28c51580
BLAKE2b-256 86a0b6d79901a510b98f8502228b3f08fb4161fe848bf5086d602d3c092bce59

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 450.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2e0101d33730703dbb92e733e676ab8aa68d5b3a3f93120dc1f1a1aa09bdf400
MD5 16a781664aa8abe09eff37db47cbb9d3
BLAKE2b-256 7d56f772d6998083f94595cb2628da5714a186a2fdb34cce98588bcd481c00b1

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp38-none-win32.whl
  • Upload date:
  • Size: 405.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f6ce53362f7a2dec83648009e7afa79c1ab3f54063f5c046a5dedc9190ac2a53
MD5 dfed045c8b1b5d8e168b12ba03cdc342
BLAKE2b-256 d704ddf2713c34c4e9d4aa2b553f560dcb25fcef626123ce2fdc0344a9334c5f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e88f95d7f103694701fb8837ee0a4603b1eddc88b67e459a839c1eea252877a
MD5 fab74897f2b26b1a80abbcd815c42eb3
BLAKE2b-256 e68465e12186b58189841251a84783872fbee6214ce097390a63fa96a6aea807

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ade5dd9a99ebfb548e8b87798107c6347ff1f25e4213d5d690f14967891c2f5e
MD5 59cc2e5084ccffb958f30fd9a4c29b23
BLAKE2b-256 aaa1e2e071e047831c9fb06d4a3c7ffe105405cf954ad7d2d76a79c0d11c6a43

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 450.3 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 7a2532a6a6b865efe24a33f6065d553eb18c27302f42c4f921e027b5332fe6c7
MD5 25ff49703a26f02d540566b047593d84
BLAKE2b-256 6628767a7ef9e62da51e6b0f308093532938b69997fb716aec038baa0460c022

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.5-cp37-none-win32.whl
  • Upload date:
  • Size: 405.5 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for llm_rs-0.2.5-cp37-none-win32.whl
Algorithm Hash digest
SHA256 7fc8ae22f7d92dcd35349abe02a8cf3a50bd1851e59a204de7b01149ecb08458
MD5 c911098697c3bdd3674f3c5b7c9a5cab
BLAKE2b-256 249c81a3e5f8a88dc7513f91262b2592276f36a01c4dc5a5c53247f31de2aa5d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4eb46ab6e821fa9e26f0152045b2aa7e514001c89a4a2a81859a0353c73a7391
MD5 f8bb86201cd72110d9cfca94d171bbb0
BLAKE2b-256 42cb749574263c31bca87394fd381189006216446447e4eb5a08af788a5cd8cb

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 45a7975573c70d0eaa5b79c83c3a0386e4cf1af43365b0304b8ebdc79879ec5f
MD5 37287c4332a180f5aa64f255d0612ab6
BLAKE2b-256 51524c1c9b16d6c520c0477f39897ed2d4ffb4e589e3f7fae3d676765ecc1357

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page