Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Streaming Text

Text can be yielded from a generator via the stream function:

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
for token in model.stream("The meaning of life is"):
    print(token)

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("rustformers/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.7.tar.gz (34.5 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

llm_rs-0.2.7-cp311-none-win_amd64.whl (867.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.7-cp311-none-win32.whl (774.1 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.7-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.7-cp311-cp311-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.7-cp310-none-win_amd64.whl (867.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.7-cp310-none-win32.whl (774.0 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.7-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.7-cp310-cp310-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.7-cp39-none-win_amd64.whl (867.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.7-cp39-none-win32.whl (774.4 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.7-cp38-none-win_amd64.whl (867.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.7-cp38-none-win32.whl (774.0 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.7-cp37-none-win_amd64.whl (867.3 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.7-cp37-none-win32.whl (774.0 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.7.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.7.tar.gz
  • Upload date:
  • Size: 34.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7.tar.gz
Algorithm Hash digest
SHA256 e9e329b36635f75e0568ddad25b71949d22658205d9b27715fc05dd312760ddf
MD5 1f503b2625f38c2af0505fd3e6a8d0dd
BLAKE2b-256 a33d237355ac03a81c0c61560470f5abbfe5cb939a7abf93e1f771b90be99a88

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8482621c3f8171c6c7927c9c1c42e47832101d517e253339ac44d2150781c18
MD5 71ffaae014ee8417a15cefeb9a5befaf
BLAKE2b-256 15b795474c8e73cd3f0e7501178f040ba2e0c7cbc8ea8e82af2e9b73625fdbd6

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e8193347f36f9505aa92f97d9aae7a3b9c68696cfb3266d3376ca37f544b7519
MD5 236e18d8adaae2f2b8b67805eeb6a8da
BLAKE2b-256 482a2db4e1a60e475e294eb68176f1845ba8e5b6206f090621b062b97c206366

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a89e71fc2224da140c23e491631d849c626a70a468b53d41c8d5987993f0afe0
MD5 a5d6b54e6b1f4fe1705e6f789c03b4fa
BLAKE2b-256 7a535f9e8a8fa6fb90e20f67570313ba441d1f11b7b6a5fe750e573d80f58b56

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dbd9e3b831ff6e80ed335999507fa68824a980cc6aad20c57fbd9b3f282af967
MD5 686f3fd28fef45af10f4a132bba029c3
BLAKE2b-256 777064a89d3cc54a93d0938d6c49478ab169f259d557a40d4bf2faacba87ba3e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06a8af47e632150a2e41556592e03e8d106f42a157e32ceb0d98e2366686bc6a
MD5 c55d43cdfc01e5a40b288403f60215cf
BLAKE2b-256 1f6007546974ba84273fce37eb2ea8531b237f29ebcd66c64bb3406ea4075ac5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c799fe3bc7a95ff12ebb352569ba6aec830b9bfd1108d1bcb52011011d453017
MD5 c069acb4be853a70873d1c71df872312
BLAKE2b-256 4a05502fae6992575c1e58b1aecab9ef7fd3cad045d113ab14604a69cc80f890

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b04dba4bc93afdcaa9292357c120962636c16e5c78c51e97de7ace7f8eefdf5a
MD5 295f7549ba083376500b9e1023ef879c
BLAKE2b-256 25e596916e14a30dfebc3e91848952a29153cfd23ae914d1620e55866ae4e19e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ee3bec75ceb8b448e71a1a031edf7fb957b25c6f8777cbabbae710239bc25da4
MD5 6b11f8af0d867a43fb3711205f699f01
BLAKE2b-256 d16fc2e617a101c47835ee448bcf442996a9dce08bb6dcca34a2dc3cebb46e9d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 867.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 52caea34af568085ecee913e459d29081a899a9fec7222f134f52b83482dc4cb
MD5 a7925d8dfa293aba82b7d0bf08c5bddd
BLAKE2b-256 0cf0844955169385441374c205cca614c97b8bfb8fce0fcff2c17c9eaedbf091

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp311-none-win32.whl
  • Upload date:
  • Size: 774.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp311-none-win32.whl
Algorithm Hash digest
SHA256 ce224b335dfac3125be05546de026bed10a962365767da460f755695a2f012e8
MD5 8514252ab8598473b1b7417227353a05
BLAKE2b-256 37afa22da4123d501fed7386098bd5eb01b0fa03cd73027e4c6e744fadbfc7ce

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c8ed8852782c0b4de5dc44ce169c0c2409398c6f5ba3cec28f6b2ab2282d837
MD5 f7931c0b3aa9b8a6713e695cd6d5b991
BLAKE2b-256 64caf2631ed75a389952e2d5f0a30f56b4076a77ea003d269d121f418b4899a8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6e8ee3b004e1ee6ea5a9d5759e7bef5c36801a95164e09734d14cf4d15286863
MD5 dabcdc2b6415d9d678f6ec3419dccff0
BLAKE2b-256 ddcff5fdd3dbef9cb3dd47a2b731fdc16ffb1c6fc71b54b59358d6a4cb013806

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 75d838e7e07d277c31554f1455f4cbf107a774add8f9bf51aa4186b24b2d9891
MD5 8bec77bf3ecb299afdee5a59359f7101
BLAKE2b-256 12070f5a2319e2cf33ad63c4f847c733bdc8af4f8fd6a0fd1522ffaab998618e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 582ac05bff2ad8a99b19db277843113c13ef84f80ebaf1c49f7051a137a4df5e
MD5 938e5961e719efa280f86bd2ef4cc939
BLAKE2b-256 580409f4581c2acb6f426b12c70a2e0d155f3a79301616a7cf3a04b23d1db89a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 867.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 94daacbeda43fe475d126cea09ce824ed3fac11fab06f0afaf1a4d6d3b4d9bdf
MD5 c0076d447b30fc61c7c6624fc7b4b5c2
BLAKE2b-256 d54da097bf4008646313f3d0d97e48f2fc03edab1e64bb25a8ec1c624cf56d9b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp310-none-win32.whl
  • Upload date:
  • Size: 774.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp310-none-win32.whl
Algorithm Hash digest
SHA256 84cf0c7c0b924f31d23e0fd90972b7de6bc0ccfe101f3669c301b8a623874627
MD5 615e62407938e9cdbc31941047bdbd55
BLAKE2b-256 9965d3d2e1fd79f890a0dde1504cd112e543310852afcd9405ebaa5aebf762e4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f67c2cfb78ec15460f18a512a33639efc80f96956f64084f803c35e66c0bdf8e
MD5 039d6f1b6b2453795a0ef73273364860
BLAKE2b-256 f49976dca9aba719ef181997f49e9f60897c769513d961c0acaaafe532e7ae3b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 067496a952d8e3dc3f5811a1af91140817ebbab40be09854a84bad2d6390e0ef
MD5 b7607385860267a040efcc249c18fe00
BLAKE2b-256 831131466fd33b42cc1b301ca225f4c10404f5364d5aa8dd9847e3ac2b4cdbeb

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e37d508f1487648793a6ed1b2178985099c11031d1f0bc5cfbd5c65afbb1384e
MD5 a481f8437d8044fba9c7dae1cbdb184b
BLAKE2b-256 a6ecd39d395a3eaa2e5364db3d6f878dd3650ae1ecaebb164e4cb322a9a6d212

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f3a8893def83ebf5e510409cc9e33d71fff034d739989e89756185063aadd3c5
MD5 531c994e1a90b776ce000906aaefa2db
BLAKE2b-256 b88acab988d6bd562d790657c36fbd45d275335b2c2d6fe45814927daa94e7a4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 867.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6e1b5ed84a8221a452fe68ddc8ff5c72a0f648ce1ef9966c8c9adbc51210597e
MD5 4927714b1188b1891ab51ceec736b0f9
BLAKE2b-256 5649c03ee3221d017506f84aece029340cbf91f564aec150655705d4f7f4a4e8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp39-none-win32.whl
  • Upload date:
  • Size: 774.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp39-none-win32.whl
Algorithm Hash digest
SHA256 673b088fada6a2074aaba52ccaf85424209b1d4c3549b9039874227bfb18b46b
MD5 9b2d7f833ce91766c56450aca40d5b5a
BLAKE2b-256 3dadf1bd13854fee6fa740bf9d05371a131114823bd6b63780a2ccb628fe769d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3921bf6c3a87af0b3463c303a3514cbee3d4323f430d6afcf318c5b5d3dad041
MD5 3b0e876fab74e59ea2a99e2adc6ea4be
BLAKE2b-256 fbac4f01f8fbae819869a0ecbd619acd137b9bd58760b6a694961c2154dace7b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d06eef132cfff62d60388609da5e1decd6345e1930540a23dbdd046c1937eb15
MD5 4cada3aa345db89f0a63a1fc8910b184
BLAKE2b-256 dda6207d049a09b7975fa271fe10e3b06a81aa851d788b993db445d27243434b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 867.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b10ab67a5884aa31a1eea523e329369b4779f3a346c3e1d7ce0a3c8788ba15bb
MD5 cd66b3a105010709a497cfe64624635c
BLAKE2b-256 ea7ff08b6a7c52c82d4ec90b6e0431cace9bfe588161c883b1e9e66417d3c5c0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp38-none-win32.whl
  • Upload date:
  • Size: 774.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp38-none-win32.whl
Algorithm Hash digest
SHA256 59185b9bb6b57706645f0219e78db01447a65fe726f77a52f4a7911c022c3e7f
MD5 977f0b6d4863fea9ed39713df0260a69
BLAKE2b-256 73ed2ace250dc971e83b320e61d9e248715a537067be9b0219b10c0c97d7bb58

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dab4d8604e73f61a5bad2625b74e72070f0c80d9d8bf27a1221cc3893d2de140
MD5 05de4f4982718d8293dae6230867f92e
BLAKE2b-256 1694fb1ee1759634dc8f171bf76cdaaad04c19dc5dd27fa415afb7cb28c45c93

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 44b27704e154d822ee638116b529ea77a445392973a7bda95a44c4929bb4f98b
MD5 4382f7ef70aa5baee256f4e5c133baaf
BLAKE2b-256 478e942ad8d2f09b92939c7161628c20109f9d6ff72ef1d5013fef02ff80aabd

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 867.3 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 260613e0fd10a8fc60783c513d930aa65d131395d72da5ed3f999e58a60258cc
MD5 8ef2ed2739babeb637b8d30d1a6e458a
BLAKE2b-256 f15decae5ced55dfe828af861588b07c3d8755d5af2739efbca55efc95d74033

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.7-cp37-none-win32.whl
  • Upload date:
  • Size: 774.0 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.7-cp37-none-win32.whl
Algorithm Hash digest
SHA256 58e834cb56692d34e9975dcd26e8b3006f50e2179abbc2cdda4c64bd5c8a71c7
MD5 c5f204073001ed14749b0c5f05b91e42
BLAKE2b-256 e31d39632d71f0a43c2727c5753d34003184af8fa63e8686f1714790e825b5a5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1709caa717bccab8814fbdd514ef73d029f0b8bbf894cc8d0de015abee8f71bd
MD5 18c5a8ea979dbfd539bf24a1ef355558
BLAKE2b-256 b8c267500a52d56349b330b5f1a577a4d7386b245cc0a42e324dd0713d317f05

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 15df8a8f64593e6f1974b4659c48f57a1eb6716b87797b02f566f6c4c7a10bf7
MD5 f17bb0421339e03b686ba509a59d357b
BLAKE2b-256 4d430e7d2a352bff76446bfa5919388fbfecf88257221404f7b160da2cb85271

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page