Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Streaming Text

Text can be yielded from a generator via the stream function:

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
for token in model.stream("The meaning of life is"):
    print(token)

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("rustformers/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.8.tar.gz (34.6 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

llm_rs-0.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

llm_rs-0.2.8-cp311-none-win_amd64.whl (866.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.8-cp311-none-win32.whl (775.2 kB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

llm_rs-0.2.8-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llm_rs-0.2.8-cp311-cp311-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

llm_rs-0.2.8-cp310-none-win_amd64.whl (866.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.8-cp310-none-win32.whl (775.1 kB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

llm_rs-0.2.8-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llm_rs-0.2.8-cp310-cp310-macosx_10_7_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

llm_rs-0.2.8-cp39-none-win_amd64.whl (866.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.8-cp39-none-win32.whl (775.4 kB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

llm_rs-0.2.8-cp38-none-win_amd64.whl (866.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.8-cp38-none-win32.whl (775.1 kB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

llm_rs-0.2.8-cp37-none-win_amd64.whl (866.9 kB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.8-cp37-none-win32.whl (775.2 kB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file llm_rs-0.2.8.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.8.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8.tar.gz
Algorithm Hash digest
SHA256 60be778656c119cf55779f5b5da97584945729f092497bc31dd54099d5577349
MD5 9dcadacbcf32c1ef1963b08a82127121
BLAKE2b-256 7fac5eca07a22a27931bf70bdb9b13d82122f94d47b7c66b98cf122915f26a50

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24494b2ac394dea1d6e9773213521296bbe6db5018a0032f5311dab7839c3586
MD5 6d461cc430676bac7e0731503b4bf989
BLAKE2b-256 799bef368f40bbe65511750513c518f504f031c10196077e38f6572238052b8e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0405e21c1c0b0658c4193076f56d2b0e45dac86774b02c5025148c8c6941c18f
MD5 3b0b6d93d2ab84464d6a029862e77302
BLAKE2b-256 945973a8bde7e2b91f8fc7e08e9e865cb01f0d6c71cc2a4ba2e636c90816bf67

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd0079e90292430cdbb92ec9bc06a9686cc976a154d15a8d5051b0b443eae993
MD5 ed4b0649902cc40b97b6e36bac52296b
BLAKE2b-256 8f3ac014cf759a3b94df1ea6047e82843e32e584a3dd20634ba6480d5827f9be

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c6e7e062ad23ab6b92fb5ee70d2a8c8005fdb18b3214369d23d23f993ee82793
MD5 384992fe6810e048af53eadfe3703ab8
BLAKE2b-256 18c1a528d43d87ad33d2fbf653e315ca45e985c3324dbca5a9c5ca22a84091ca

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18b613afc1e3f3aeec5f900d1491636009cb0d8e7c009009702d6b2d9c19f00c
MD5 e96215f9a70c83968faf5914e05c8c4c
BLAKE2b-256 5c48729c2c4883c5ccaae16b572f3e10881a779dff9fb368e2a9931d0a4f7789

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b016248907f0e5ef59d0f764541c6ed6f581997724093b6e36250ae4ec5f9283
MD5 597dd0a9db73dde71dfd2e9590a4af19
BLAKE2b-256 4f2240f797f66489a800a32263e8848cf7bb2d13c6dddba5ceee056c997c2668

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f65a565ba4165395c739585cdea99673e44d87d5a39633f85d46a8e62779be7c
MD5 ac9301f2766de43c88b79da5d82dab3d
BLAKE2b-256 422b077a9494dc5cf29dd3ff7bb6cdf95ddae3f3b61e1644a2aae94192c58073

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5b8eae78a827035e596913389115b7c306a86d97a0c852cb5af6ae68bcac92c9
MD5 8a3e2cc88fd8480c567c3b42e16bbfca
BLAKE2b-256 0bef04adca66481df45618d3ac8f752e78e402e9442301a9a899a16ab77c5264

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp311-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 866.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ae2eb09e3959d97a7b74f86ec70b0418441b72829f6fba820b5c05aae590b0a1
MD5 848e2d13a39c4981ca6e3b4cda851b21
BLAKE2b-256 84ddd5a6e37c81f4bd3d12ae1d32d63c648e5004ab9e273b5ef919d34b1a0efb

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp311-none-win32.whl
  • Upload date:
  • Size: 775.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp311-none-win32.whl
Algorithm Hash digest
SHA256 e9cb552dd7a7b8eddd256dcd12e980f60d1a04b85cae9a50c75e6b58096e9829
MD5 4e1140e874c61dfa202b2367f525e4fd
BLAKE2b-256 d687b4dc9176179adef95889a20c875cea05557614c25034d407d8f0ee24676e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f74cff29e18815ff435d19f33e1a0e88394e1113ed2c8aed50f48fa59665ecc9
MD5 aa38d9b93690757955786f71f01aba58
BLAKE2b-256 3f260cc7b6559485ba879099e2ef65aa158fb05fa452580539eefbd2097103cb

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 42294c8d7ecba79593986c53bc54482e5abb48745665e6edb30438a2d11b286c
MD5 13d4c87a2f18e8e591effbb5ec01a02a
BLAKE2b-256 1bb26b7249be77e7ee4010f796c5d76a959134e73dc2f03459e73848323dc768

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bf97d7414eddaf23fa532d14f45db83fc29bea679249e6c107ceb5940022979
MD5 28e0dd32b25711b4bd045cd3632ee3f5
BLAKE2b-256 4c1005a9b076ff2f67ffc7f51e3feecf0263163a71608e3816213ef41691a23e

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b069f33e1394f4b5ab532bd182871aa2984779ac8d83bdaef2db960e08788c10
MD5 0927e48f7437b537f46dcbb887ebb360
BLAKE2b-256 12716f2ba9a5391c7c15d89151e6c8c64682b0669137a3e9c838d3e20caf87ab

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp310-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 866.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 35238631f4ddb02e1f67e578e300c9ed30ef5a3a9f69e8cd4aa162927e4301cd
MD5 e95052cc6679926175883a9ffceca146
BLAKE2b-256 0c6983f22cb2031047fb091eab267244cdac31742601f115ab75dd2beda17fd0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp310-none-win32.whl
  • Upload date:
  • Size: 775.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp310-none-win32.whl
Algorithm Hash digest
SHA256 fdaf0146e43607089a40077f98434cba08d6d27148c62e07afb2e702be4d095b
MD5 9ada8295c1ef18792651845f636bb5da
BLAKE2b-256 70963fdaa02e6d346c71068d3a066f0d4d75c3ee2af4f21e8c756efd2f0789bc

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f49d6dad97fbb4f39cdc1a6618ceea50f10ef4eb9dfc5eb9a72e1353f9a6845a
MD5 56582713870af280f676c3e730b72698
BLAKE2b-256 06018d7ef6c75ff0cef72541076ea41c70427bf8fa9c7952071259955e42471f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 817801e7466bfcc19412ee9d2a178c008ed181aa1e5979f195662edb629cc717
MD5 dcd1d20b5a35d91e8cf74915c032d255
BLAKE2b-256 def6824fe20a42dac5cef65e418b70b9ac289ff9bb674a9692c112adf283637a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bb6b11c947d660e931a4946bb8c04e908cae785c53ca8aaf66f3620bd68278d
MD5 8204675da08357618f6247b700e30d06
BLAKE2b-256 af2753d37a2365982c06ef9042c4b8ce01c3611695d2869f6277a98d4542128a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6deb13b0ad8af3f171b820b0c609d24628491c8004cff0ca38dff5c8392f6c9c
MD5 8b1b93c3dfaffaf326126795a985a766
BLAKE2b-256 2a673ac0ded6494efbb57c43adc312eaca02118ca824ca28d7d7d4989e3dcc59

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 866.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 af6339c20094ec302b5b4d0b2b6235f8d13db3e3340c7f3d8ab792e4304b6180
MD5 ea9e4502d7d3ee50bf192fbea6842c2f
BLAKE2b-256 88fada342d888b6f6add5f63f0fa8f2322030492d0001561556ac709b98273b4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp39-none-win32.whl
  • Upload date:
  • Size: 775.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp39-none-win32.whl
Algorithm Hash digest
SHA256 0bc15d0e339e7d1b768dd6a1144f7f5bc931cfa3f8bd1bc8bb73899e94028df7
MD5 d78123f3a1d80e7ceffc47d83dc8ae90
BLAKE2b-256 69aa140e60b3488f1cd45d5fcfdd11992cfa4ff8ed9f110c34cd777f0b863ce4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31fb42145e8cf9be21c40510dfd2cec80fc587452c9c9370c2f426294d6bf0d9
MD5 65b90f674f69b9256a0071d7bf2201da
BLAKE2b-256 7113e3ed9fdf06e00208b002a7334c1cd4ff81b5f6a9a13626c341eca6af2d99

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3297183bca2901a14b8c2b05bdece6da8489b4518eec8127eeab62b146fa77f6
MD5 1d42db676033abafa6f9fba7331ab485
BLAKE2b-256 b2d0ed1d53e52dde31685660335647a4d4f09acfec0183857a1be99e2e4b3c51

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 866.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 5d461fb08cecf106d05914cfeac190d7d9eaa11b312961eb347ab1cb2a10c79b
MD5 5bacc8783dac13f176730b9d4060ac47
BLAKE2b-256 7d58f04c493c89942ce0b85ef6ef2292bfba76285a3816ea88f345d925713e26

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp38-none-win32.whl
  • Upload date:
  • Size: 775.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp38-none-win32.whl
Algorithm Hash digest
SHA256 30d375ca4d952b015f8be38cea1eded71db174ecf8934c0d475d8844011b3757
MD5 59ac76aa99f17a12537e838dfbf42746
BLAKE2b-256 4bb6b09e8edea967799212b97b5560ad3362c32c812ae09f70009e68f3ba2907

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bae7e1a31e3ee5b03ec55dcad2eb41c300d838140d98808b3eb8c999dfdb328a
MD5 c90a7c17b7d4e76001edd7d7264d02c1
BLAKE2b-256 9676a7c60fdeaf23763b985c525592a47e57fc978cfea2e7ec7b4655d4f9be8a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 80a7e5e72307b4583aaa8be35589501d9bface7d92c9ccf8859f6b968ac1c8ed
MD5 d8d5d36586628a03b5670f9991a642ff
BLAKE2b-256 fdca110c05e2efa716995ac9870ac004221ca2cd49da0ec65b1315afd1fc10c2

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 866.9 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 2244e27b947325c31052aa2460549e747e4ec2d657d24efc496dce760520ac43
MD5 2474d7bdfdcaef289e809e5ff2759b63
BLAKE2b-256 02b50997718e712ff08dd51d5a309458b50231368dda111f6fc25a8e2b9e8337

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.8-cp37-none-win32.whl
  • Upload date:
  • Size: 775.2 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.8-cp37-none-win32.whl
Algorithm Hash digest
SHA256 e1485381b358ff4bd6184fc2588ae3c47779b0196d45f9e0fdfbcfa3387a9038
MD5 d2ac785f3ab7939a10987a0834bdc237
BLAKE2b-256 c6385d56b470d661719c921bcacbdd780a1ba82e423a2b1e75603355d032c436

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ff884b3f2ddc81ca2b19b0b89b3635058db6975f24e8cdbec5cbc40b75c57e7
MD5 367b80f5ad16c7e1ba8b29a706e25a60
BLAKE2b-256 af775d5fd0ed8ce1a0ee2245545a9367b46afe2b48736fd08829fa80ae51faee

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b0b659cbf429e3ffe8db29172b67a3c36a435b2f3b36bd229cd4086bb2673178
MD5 a9740bcdc04e7783c5f522e8d3d786f5
BLAKE2b-256 21a3343fb1ca26c1fc958dbcaa3da07c2bd7994e47a191b9bb5c594b36d15274

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page