Skip to main content

Unofficial python bindings for llm-rs. 🐍❤️🦀

Project description

llm-rs-python: Python Bindings for Rust's llm Library

Welcome to llm-rs, an unofficial Python interface for the Rust-based llm library, made possible through PyO3. Our package combines the convenience of Python with the performance of Rust to offer an efficient tool for your machine learning projects. 🐍❤️🦀

With llm-rs, you can operate a variety of Large Language Models (LLMs) including LLama and GPT-NeoX directly on your CPU.

For a detailed overview of all the supported architectures, visit the llm project page.

Installation

Simply install it via pip: pip install llm-rs

Usage

Running local GGML models:

Models can be loaded via the AutoModel interface.

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
print(model.generate("The meaning of life is"))

Streaming Text

Text can be yielded from a generator via the stream function:

from llm_rs import AutoModel, KnownModels

#load the model
model = AutoModel.from_pretrained("path/to/model.bin",model_type=KnownModels.Llama)

#generate
for token in model.stream("The meaning of life is"):
    print(token)

Running GGML models from the Hugging Face Hub

GGML converted models can be directly downloaded and run from the hub.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("rustformers/mpt-7b-ggml",model_file="mpt-7b-q4_0-ggjt.bin")

If there are multiple models in a repo the model_file has to be specified. If you want to load repositories which were not created throught this library, you have to specify the model_type parameter as the metadata files needed to infer the architecture are missing.

Running Pytorch Transfomer models from the Hugging Face Hub

llm-rs supports automatic conversion of all supported transformer architectures on the Huggingface Hub.

To run covnersions additional dependencies are needed which can be installed via pip install llm-rs[convert].

The models can then be loaded and automatically converted via the from_pretrained function.

from llm_rs import AutoModel

model = AutoModel.from_pretrained("mosaicml/mpt-7b")

Convert Huggingface Hub Models

The following example shows how a Pythia model can be covnverted, quantized and run.

from llm_rs.convert import AutoConverter
from llm_rs import AutoModel, AutoQuantizer
import sys

#define the model which should be converted and an output directory
export_directory = "path/to/directory" 
base_model = "EleutherAI/pythia-410m"

#convert the model
converted_model = AutoConverter.convert(base_model, export_directory)

#quantize the model (this step is optional)
quantized_model = AutoQuantizer.quantize(converted_model)

#load the quantized model
model = AutoModel.load(quantized_model,verbose=True)

#generate text
def callback(text):
    print(text,end="")
    sys.stdout.flush()

model.generate("The meaning of life is",callback=callback)

Documentation

For in-depth information on customizing the loading and generation processes, refer to our detailed documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_rs-0.2.9.tar.gz (48.6 kB view details)

Uploaded Source

Built Distributions

llm_rs-0.2.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

llm_rs-0.2.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

llm_rs-0.2.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

llm_rs-0.2.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

llm_rs-0.2.9-cp311-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

llm_rs-0.2.9-cp311-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86

llm_rs-0.2.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

llm_rs-0.2.9-cp310-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

llm_rs-0.2.9-cp310-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86

llm_rs-0.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

llm_rs-0.2.9-cp39-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

llm_rs-0.2.9-cp39-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86

llm_rs-0.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

llm_rs-0.2.9-cp38-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

llm_rs-0.2.9-cp38-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86

llm_rs-0.2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

llm_rs-0.2.9-cp37-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

llm_rs-0.2.9-cp37-none-win32.whl (2.9 MB view details)

Uploaded CPython 3.7 Windows x86

llm_rs-0.2.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llm_rs-0.2.9-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (7.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file llm_rs-0.2.9.tar.gz.

File metadata

  • Download URL: llm_rs-0.2.9.tar.gz
  • Upload date:
  • Size: 48.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9.tar.gz
Algorithm Hash digest
SHA256 d1f1cf1c51c969a47f791284132e68cb87163fbb8d1460f07e5e6021e9c189a0
MD5 0920ae137f97c396a3696eef359458db
BLAKE2b-256 52515160d982d0e0e1b332d3e5763dfe89711ee021008488a07f2498a979e5cb

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1bdcf05189f7c72ba54e18e36bb2abcafc4e7f924e511226dde8c53b50d5de4
MD5 8050781873f62c2215e3312134d73e8b
BLAKE2b-256 47614873d6c143fd0bddd205d639360a67ad096b3d87275fc1a4e5e348ab6c06

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a917643850469b6c68277fb78830b00accf9ec102268acb79d0182916c1f1973
MD5 87d60d1370cd46ae6c708d3567dd5be2
BLAKE2b-256 2b4b0d65140e18c88131ad09b11255636752347a98fd1851426899e2d32e11e8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30f881cae61679d4750880df8cf49ce971035ca5581365de9ed67da0877b1030
MD5 69f78c535c4f8915c378d88c1d953686
BLAKE2b-256 fdc86585aa77c30683e2589245ce8fa965dec1a7ba1fa2a284681b5e9020b57b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6704700bce21c7a2a24e1718327507179b15a53b1bc7006124d8457c3db9bcdc
MD5 085de78a5d9a772ceea79966b89c7335
BLAKE2b-256 91c40caaebc3975ad292a5c4b427881ce56109b98c76e79ba5c5ed1f6a806531

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8772601a35a1289bb2f015afaed4487a8aaa391762f387921b9c47bf6518b32
MD5 213b57361f6d3dee09e3baf4e9b32db1
BLAKE2b-256 a2a1c0e4c05dcb35f507dd666b27ebd3f6633dabddf60b55a583bfb8a8b97ff7

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d89a14e4162743df7946f32779674290c1452bae68eecba70602ec813d2e9109
MD5 92fa2e954a8b6dda97e1e2e94579f595
BLAKE2b-256 c1d915481a1c083fe0f50ca29b2f4ad40a6c50b0f5476bc083c1c7262eeaee6a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92338e0fdb78e4c1e3c972e11f15ef98b7c8b18ffdd4cd5052962154652e0f6a
MD5 13be6568537079448caad113f5942ba9
BLAKE2b-256 b4254f574d042614a2abebfea926689d3c9d4b86067f0c6d1030e3a06304a3d5

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ce4bdfe720ca33ec1c32d4b08d1841604901e05d361c8777ddb49eae40a63b27
MD5 dca690e14c61c72f8037ec34f4368ecf
BLAKE2b-256 dba168c1839bcde638d371c849e92811ae572f8c5bf5e1b020160e1574aa2f4a

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 d2dde2ad98f1ff177dfbd1f778471541baeb49f4ccaea390e174435c6686f43f
MD5 5de7d7481a17e37f863b7de7943fc694
BLAKE2b-256 d0efc27051d67cd0751ba3459bcf55f9b05d95a764fc508e1f7b713d5372f3f9

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp311-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp311-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp311-none-win32.whl
Algorithm Hash digest
SHA256 af5e43cb0a59662bf348434eeecce6337eaccb969e7bfd6da7f235201943f7c0
MD5 7fe87c89654f0ddabfc114806f3f8787
BLAKE2b-256 26d241b4954cfac3fa7c754b54bc64cbc5e51e1628bb75001315b7c6c542e0ef

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20f98aeb0aaedf5962e11b82ce0615b2e0f00d4d86dc3547a873fe2c8ef781e6
MD5 3214775c97d0216aa75a273bce09fa81
BLAKE2b-256 2547f8ebeaa08b941aa0bc509b395ce31a76db5b8198cb828c03f1139ec5258f

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a93b10fa3e6d3c6b87dd2c1d93854c7bf45fb6e29fa6c5297002b8b74a0749c5
MD5 12adf0761e637c6135acd709db93b633
BLAKE2b-256 3a520d8a3c8019eb4f73dacc08e8cef8aa522dffde04f945bc3ea30eb918b06d

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 04404ba5b595b93487a11a053581b52378103e46ca9030cd90c8137e5cd0f04b
MD5 d98fd679065bc6c928f02dbee17f1344
BLAKE2b-256 ebdf545f2ee6863d31cda543ccf590decedaf741e4567bd05fa2e786fa27cf5b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp310-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp310-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp310-none-win32.whl
Algorithm Hash digest
SHA256 a3b8c259a4a8bc24ee20700cd9374d9e69926a69ab6c1543f70092a59a3df411
MD5 cd18a249cfc848220a7f8f58ad13d66b
BLAKE2b-256 d03b490a522819089b86962e01ece23c1385c03348fabe12fbf899cf834585d8

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 263009af33e29fee4cbf276948eae00cdbfdb6a30674b411983797d6a70bca41
MD5 5764880f4b29867a16068a2677c0c467
BLAKE2b-256 650801aadd438be75cb8f570feeda653a7562f02f610fe6500a8efb916efbf63

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b41106fb60117ea258aeb3b02c9dddbedbe915a4a2526df7fdf4b7da58f7d6dc
MD5 00554d5306d2d529529c1cb00ace42b2
BLAKE2b-256 e2232c71d6db728c029edf24518806313b9e9fdb0d0e605a093d89c00febc3d0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp39-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 1bb443de84d105fd553fca4c5fa01290d42dbd66a2958873160a46f5bfae539e
MD5 cb8f944ef2463d0670253f0ff509299e
BLAKE2b-256 fd70880804b03c6bcd685a9eea98942c3b50ca6d19884b04bacb21243afa65dc

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp39-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp39-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp39-none-win32.whl
Algorithm Hash digest
SHA256 07406aba93948eac8f5dbbeb762962d45a07ba7e70cd5f2ac3fd8efa76f3faf6
MD5 24861d3ea20e659d38b5edb63eb56ae1
BLAKE2b-256 91c15015d07ffa6c4450ed82054cb6af201eeda4d4200de20f3b481ce5e3c61b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3455a80d3b10ed6a5022c0574d0a552fce808558f04fb8abe035e83f3991b5b
MD5 897aedd2776ddaede57ff54e882aa09a
BLAKE2b-256 951457b963f5aea9aebac35f274601b217eeb42343905e05a47f9b43eca75376

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 29ed73648876c3168e81bede51c0266f6b2342238aff9dacdebd6f64d1204a84
MD5 ee99271de77c420cd352be2aef6dd119
BLAKE2b-256 3e3bf8e4c5972764ae3a42d297bd1e43d3caa6c58a60a71843dc3c9e00ebdfb7

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp38-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 c6f29d46500979169a40c9dfb50b50294e09cf02fe602a1cd7ec4501a04b34ad
MD5 032a811ca2f5aff8994a27146c3abd18
BLAKE2b-256 dcdd13ed682750987bbf6f59dbe30ef8b2af393c27bc3ec41c7a543e3fac02cc

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp38-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp38-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp38-none-win32.whl
Algorithm Hash digest
SHA256 60a1d73641345d56db2d33b0b04017f16335b567985b3904b4c1c838a8dc9106
MD5 f6691cadb45e654d11f1372bbc1dcc4a
BLAKE2b-256 479c0ad8c48b104e28bfce7b42034c0d93ae1fb7b67ba3a59e5ce999693fbdb4

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af780d38e2e61b28d8238c04274179446ea682516ace01fa53e3e9f22a82243b
MD5 a120feab5aafe073107bed410022ce82
BLAKE2b-256 8a8f35fe28be4eadf150e181855314513d54fe3d59a56ba65f9ac80d427f14c3

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 56ba9c24895ddb09a5e1d052d78f69a81ed57dc1b931497a52e2ef9f5fdce2a0
MD5 8d73883bde8596c36ef00e7ef8eeae6b
BLAKE2b-256 dafaef6ec92c7b31d3598747be873cd0f27a11b1f27aa16460f1b655bde140e0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp37-none-win_amd64.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 0490ef8b4cce79dc166ad187a72c293a099faf01fd5f78943449f36da3eb64c2
MD5 2bdb21f258a20856f339ddde2546fcd1
BLAKE2b-256 48cb2448ef305969b46502d5abd68a8585ebdeffe5433f54e594ed8e167c8c5b

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp37-none-win32.whl.

File metadata

  • Download URL: llm_rs-0.2.9-cp37-none-win32.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.1

File hashes

Hashes for llm_rs-0.2.9-cp37-none-win32.whl
Algorithm Hash digest
SHA256 fd6a53036eaf85c8cc9b81923fa674c803f1ee9c0efb03c1f07a275afde69606
MD5 796e0bd054ae2b77f3716903f74ebc6e
BLAKE2b-256 b77568c2e6fc63d6acbc78d23871dd2265b1436ba143f18aa6f80606edfeeb51

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c86c69fc67fb1820a29c74ad3bbe5c070175a015c01548c3dab08ba8a1967ea0
MD5 230b5cc7c1e43795d3b5dee9b2d4ed1d
BLAKE2b-256 2589dbe14dac6713f9d6142158ffec35aec420461f7f05a80c6db7b66e7f40b0

See more details on using hashes here.

File details

Details for the file llm_rs-0.2.9-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for llm_rs-0.2.9-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 56829d82a51cf0d9307524e5b860d051d04d437841f396464b55c6705ced9ee0
MD5 7c5d2e40abeaab3de6b03e64442dcd06
BLAKE2b-256 454e61c9028248693704a974ee08bed76bad5a2123e8c4f2122414c809833036

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page