Skip to main content

LLM Benchmark for Throughputs via Ollama

Project description

ollama-benchmark

LLM Benchmark for Throughput via Ollama (Local LLMs)

Installation Steps

pip3 install ollama-benchmark

It's tested on Python 3.9 and above.

ollama installation with the following models installed

7B model can be run on machines with 8GB of RAM

13B model can be run on machines with 16GB of RAM

Usage explaination

On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.

When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.

ollama pull gemma:2b

When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llava:7b

When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models

ollama pull gemma:2b
ollama pull gemma:7b
ollama pull mistral:7b
ollama pull llama2:7b
ollama pull llama2:13b
ollama pull llava:7b
ollama pull llava:13b

Usage for general users directly

pip install llm-benchmark
llm_benchmark hello jason
llm_benchmark run

Python Poetry manually(advanced) installation

https://python-poetry.org/docs/#installing-manually

For developers to develop new features on Windows Powershell or on Ubuntu Linux or macOS

python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry

Usage in Python virtual environment

poetry shell
poetry install
llm_benchmark hello jason

The default sending back the info is

Memory Size: 32GB

CPU: Intel i5-12400

GPU: 3060

OS: Microsoft Windows 11

Example #1 send systeminfo and bechmark results to a remote server

llm_benchmark run

Example #2 Do not send systeminfo and bechmark results to a remote server

llm_benchmark run --no-sendinfo

Reference

Ollama

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llm_benchmark-0.3.1.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

llm_benchmark-0.3.1-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file llm_benchmark-0.3.1.tar.gz.

File metadata

  • Download URL: llm_benchmark-0.3.1.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Darwin/23.4.0

File hashes

Hashes for llm_benchmark-0.3.1.tar.gz
Algorithm Hash digest
SHA256 18838c0be8bf362f00aa98ffb14b90a63cde5c156207a608bacd384c216fac1f
MD5 cbd5aad29d34e98cf88f36d8243c8d87
BLAKE2b-256 7701bb5cd16986ee940cbdcc0241d4f1026e3948a337f1fce32ad5f1d75feea9

See more details on using hashes here.

File details

Details for the file llm_benchmark-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: llm_benchmark-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Darwin/23.4.0

File hashes

Hashes for llm_benchmark-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 051141b63b6776b63a7fa10477828147f0b55469a864f466a3b66a69d8d5d8d7
MD5 1401ef629327d2d8164ac99aae49fcc7
BLAKE2b-256 1b5273937774456f652901009385d4da965d8b584decd57b30a3397fb1b22dab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page