Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend_component=input_components.BaseTextArea())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.10.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.10-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.10.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.10.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.10.tar.gz
Algorithm Hash digest
SHA256 949ac3964e3a7a549ed0ffc4d4c692fa770579def00e782d949e7c97bfb026a3
MD5 9f513cac155990f2bfa62d080761412b
BLAKE2b-256 f2f61a0555a16f71b91e1ab984239e948d785f0f9648c211d639ff9a2986bcf6

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 b6795f87512fa2b02c620b1efbd772f2f2f1c3e2b7203bc4b85110eda49f6bc3
MD5 3d9e4bc5ac699560131869e75daad153
BLAKE2b-256 97c7f6d11474b51ce8c5aa649e3d3568263539f296b93b1d8b49614e0366ede4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page