Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.11.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.11-py3-none-any.whl (6.6 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.11.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.11.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.11.tar.gz
Algorithm Hash digest
SHA256 70c791a7086646af97bcee661bb01adc76519c4af5f7fa48d2a40a712eb883a7
MD5 b1d4cf3c14a0feb5fac441d44a65b7f3
BLAKE2b-256 2b991cbc9cd3115dfb25604462570b240e2072468f3ebd533e8b91f77d35e13f

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 f958d55684d45ab38b0a7bf4aa6376ee055e6d2621c43baeb8c2a555003d3be6
MD5 704db12ad997e080ac145a7729bf4cd1
BLAKE2b-256 88d470c452699a858769332474361cca32d0d51a9313b50c0964a86d9d604330

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page