Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.12.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.12-py3-none-any.whl (6.6 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.12.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.12.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.12.tar.gz
Algorithm Hash digest
SHA256 67ee2bfced237c9bb83cd5fc2a5c7f4d221b1e2cace832f982775413041984d5
MD5 98d5c632d750a6bbf715a3f029afd257
BLAKE2b-256 c587523dc42abde2d8326542f16b157676041536aeeaccdf167f0c2ceef48130

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.12-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 af023903dec977356e074a6677fdd8ba60160be453e76c5d590b72e11c19cd3d
MD5 80c63f700c63979f37cad665b7b0b1fb
BLAKE2b-256 7c46ae808f441879c9153247a27162cf1d8c26a15053e5b6b8e17e6538dbda3a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page