Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.13.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.13-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.13.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.13.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.13.tar.gz
Algorithm Hash digest
SHA256 39f1a77454e46f1aba64a56452cc08ac385500dee6c2a44e09f0faca9f94eb29
MD5 2f5574ae93c34054c349d110efa88b51
BLAKE2b-256 ff87eb2bb95ab1a94d36969ae79ed74aea096013f06554a2f007fc8f7d5f2565

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.13-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 5b2cb791d355a7f8755b36a6fd6463be0f94cf3852c4d6f32127bd24f6556cc8
MD5 fec22df5beef79c5f643306f827c1f4f
BLAKE2b-256 35ed4bbfd33ba2b703f27f30b65e04046ee1b96158f5be7ceb92906bc8ec14eb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page