Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.14.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.14-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.14.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.14.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.14.tar.gz
Algorithm Hash digest
SHA256 de0c3a1651324dbebeae8b665bf72e7a794a0c13fac7886a3c1885fc90430290
MD5 6b7d917dbc5b0fb13f71cab529eb4a58
BLAKE2b-256 750b3435c15ccc6109848f8b893f755e5ce07a62638be1e063d7c9798f96bdaa

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.14-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 9562b335f85ed769eba923ebf51dcc6f2ed46de68e141b904f6ee19780811e3a
MD5 80a111a20b92e57c902f00aa3110914e
BLAKE2b-256 4b2ee20bea1c6184b712238ecd180fdf70943f41ec3de5203629f9f72a5920e9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page