Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.15.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.15-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.15.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.15.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.15.tar.gz
Algorithm Hash digest
SHA256 3c09fb1a284b7f847a21bfc6e4c59b93911b2f0f4d1de55d9d18931af55f36cc
MD5 95b171eb1d5f927ec67a48fd04ea3353
BLAKE2b-256 fc66b7daac3578b5f94099367e40c5e57f1932406202d9d1e4e8791552c2bc50

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 6eed35215031bc85beef457233d917aaed08f093e703364877f5241b8187a8e0
MD5 b64217e722228c0069e7fbd10d769dd7
BLAKE2b-256 2fcf3cf55b586c3b8f5c965a055f2db2eec872d5064bff3dd12d5e2e15630993

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page