Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.16.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.16-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.16.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.16.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.16.tar.gz
Algorithm Hash digest
SHA256 995640701f3de42e04cf8a4a6c6a2ce894e1b612de98519d402d91d526faac1d
MD5 cb5af0b71af30631ecc0fc2263484432
BLAKE2b-256 0a10e0eb810f1ec2de2c516558d6c69c73717de815a27e73c3023d07756ccb03

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 c876ec0933e625e50d018bc500f47e6b637fc30ea1051c86528eb57aaa7726d7
MD5 65954d592ce7464b01fd291ae8be8b67
BLAKE2b-256 51409296226285634d657b9aaf64753466e05df5771e1523a437c384239e1c25

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page