Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.17.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.17-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.17.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.17.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.17.tar.gz
Algorithm Hash digest
SHA256 d9193bf3db873ed5da4a207f86aee9c3ffb5c8da9b2e7d838bdd76628de4e11a
MD5 baa4d9f8698259518234558c9769cba8
BLAKE2b-256 a5cbc719115630fb97aec4171a8d5cabae7ced2c23b29b923d30d94655a8aacd

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.17-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 4215b27c40d5fd9bd90415df4318d7035b6f6c1a91e5d3bc908435eac12a5f2a
MD5 97eeb91f1e4b11b19ba719ef12f37da5
BLAKE2b-256 272c8af34cff272c2351b2b2a0347827c15a63369555d483c55b878fafb07c3a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page