Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend=input_components.LongText())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.19.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.19-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.19.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.19.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for llmbda_fastapi-0.0.19.tar.gz
Algorithm Hash digest
SHA256 4177a4f42ad0fd6cbe497304e1473ccfef30a3671e7f5ffd99a54adc9a96f62b
MD5 7a17968c756649926cb37b1c82cb2963
BLAKE2b-256 2df1326649aeaf8564bb1772779fd3b18f767bb601330f8a8c2780c0ec909df9

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.19-py3-none-any.whl.

File metadata

File hashes

Hashes for llmbda_fastapi-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 e76d6b71d778fe399cd60a7c0c4c36034c92666837915bb1c6091f7f2130142f
MD5 a3a3f13ef55515180a7ca0c769c39926
BLAKE2b-256 e57206ff1e83b236614bcd5c1cc053575254376e6fdcd8886a3724a0ff28660b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page