Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend_component=input_components.BaseTextArea())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.4.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.4-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.4.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.4.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.4.tar.gz
Algorithm Hash digest
SHA256 f122d3ed2ccbdd5d1f2aa9d6bd8d7fa801e4475c528a893434d800a37246f136
MD5 91d63c3e465093c738d0fb5e72b0865d
BLAKE2b-256 69a967a98264e2251a62c79385d23ce3c3bd6be398c71586fd9b9a086a79aec2

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: llmbda_fastapi-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 7d7a0576bd40ae19c38a218b0f1fcc61b49d49844393d0f2ae01f97516397565
MD5 e20c14232df6c45873fa462b1d2dce0e
BLAKE2b-256 ccb7543b6282c1742e0011312f730f3ef1385f48c6326869dcd1a579860dc836

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page