Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend_component=input_components.BaseTextArea())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.7.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.7-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.7.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.7.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.7.tar.gz
Algorithm Hash digest
SHA256 5ff0e177b7bba707a58be81274c4975ae17ed3663f2426dccf4621fcd1eb02e4
MD5 e7e91be188d0fbcc5a2209892ec057fe
BLAKE2b-256 8aa992993b3eeea48db8a6c646cbcf150e201056e49f7bdaf9d957001d8465c6

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: llmbda_fastapi-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e1fadda762f291eb871d655c1d9e8f83c5e423dd56f8fbf638362310d1926116
MD5 452badea05a4d1ff5f8b58e87725b302
BLAKE2b-256 58616ca90a188aa02c0df4f1a6fffbea0214d96e7d894b23de5dd97fee9b82d0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page