Skip to main content

No project description provided

Project description

Llmbda FastAPI

Add your fastapi endpoints to your Relevance Notebook for chaining.

  1. Install:
pip install llmbda_fastapi
  1. Set your Relevance Auth Token from cloud.relevanceai.com/sdk/api:
SET RELEVANCE_AUTH_TOKEN=xxx

or

export RELEVANCE_AUTH_TOKEN=xxx
  1. Include these 2 lines of code:
PUBLIC_URL = "https://whereyourapiishosted.com/"

from fastapi import FastAPI
app = FastAPI()

from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)

If you are working off a local computer you can use ngrok to create a public url:

pip install pyngrok
from fastapi import FastAPI
app = FastAPI()

#add this for ngrok
from pyngrok import ngrok
PUBLIC_URL = ngrok.connect(8000).public_url

#add this
from llmbda_fastapi import create_transformations
create_transformations(app.routes, PUBLIC_URL)
  1. Add these options to your existing api endpoints, for example this is a endpoint to "Run code in your local environment"
from fastapi import APIRouter, Query
from pydantic import BaseModel
from llmbda_fastapi.frontend import input_components

router = APIRouter()

#Optionally specify frontend_component to make this input be displayed as a specific frontend component
class ExecuteCodeParams(BaseModel):
    code : str = Query(..., description="Code to run", frontend_component=input_components.BaseTextArea())
    #the name and description of this will be automatically picked up and displayed in the notebook

class ExecuteCodeResponseParams(BaseModel):
    results : str = Query(" ", description="Return whats printed by the code")

# This is the actual transformation
def evaluate_code(code):
    print("Executing code: " + code)
    output = eval(code)
    print(output)
    return {"results" : str(output)}

# This is the API endpoint for the transformation
# The name and description of this will be automatically picked up and displayed in the notebook. Make sure to set response_model and query parameters if they are required.
@router.post("/run_code", name="Run Code", description="Run Code Locally - Test", tags=["coding"], response_model=ExecuteCodeResponseParams)
def run_code_api(commons: ExecuteCodeParams):
    return evaluate_code(commons.code)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llmbda_fastapi-0.0.8.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

llmbda_fastapi-0.0.8-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file llmbda_fastapi-0.0.8.tar.gz.

File metadata

  • Download URL: llmbda_fastapi-0.0.8.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.8.tar.gz
Algorithm Hash digest
SHA256 4f10ef6226165c612254e29be668a7170d9226eb4a14a358c9bc55c2e0502766
MD5 e3d3428a8726e774eb97f26752dfb8e6
BLAKE2b-256 b997eeb159e777bf1963f3e31ba262051236554cb9bbb25b8d01826cd3dc5307

See more details on using hashes here.

File details

Details for the file llmbda_fastapi-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: llmbda_fastapi-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for llmbda_fastapi-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 4b4155df4025a23043e7a2b878260b939b7ae7a162ed86ff597a70d295d56c40
MD5 b41360bf4d0ad18b7c53e077e2bccad0
BLAKE2b-256 b366e135d293fcec5fa0f15900463142a5198a7686e949cc0b5ceacb39c635f2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page